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INTRODUCTION

This final report summarizes the research accomplishments under Contract NAG

2-648 between NASA Ames Research Center and the Pennsylvania State University.

More specific information on each topic covered in this report is contained in the

manuals and preprints which have been submitted along with this report, as described in

the Deliverables section of the Statement of Work for the subject contract. Also

submitted with this report are 4 different FDTD computer codes and companion RCS

conversion codes on magnetic media. In the remainder of this report the preprints, the
computer codes and their user's manuals will be summarized.

COMPUTER CODES DELIVERED

Under this effort a single three dimensional dispersive FDTD code for both

dispersive dielectric and magnetic materials was to be developed and delivered, along

with a User's Manual. This code is included with this report on Magnetic Media, and is
named "FDTDD", standing for the "D" version of a set of three-dimensional FDTD codes

developed at Penn State. This code has the capability to calculate electromagnetic field

interactions with objects which include both dispersive and non-dispersive dielectric and

magnetic materials. Using a companion code, "RCS3D", the output from FDTDD can

be convened to radar cross section vs frequency. A User's Manual describing the theory

and use of the computer code FDTDD and showing validation results is included with

this final report as attachment [1].

In addition to FDTDD, simpler (and somewhat faster) three-dimensional FDTD

codes which have more limited or no dispersive material capability, "FDTDA" through

"FDTDC", are also being delivered along with this final report. Version "A" is for

frequency-independent materials, version "B" for frequency-dependent dielectric (non-

magnetic) materials, and version "C" for frequency-independent dielectric and magnetic

materials. While version "D" includes all of these cases, the simpler versions "A" through

"C" are somewhat easier to use and will run faster than the more complicated "D"

version. They are therefore preferred when the more extensive capabilities of the "D"

version are not needed. All versions use the same "RCS3D" companion computer code

to convert time domain output to RCS vs frequency. The User's Manuals for all four

versions of the Penn State FDTD code are included with this report as attachments [1-4].

While three-dimensional FDTD codes are generally more useful, two-dimensional

codes can be applied to geometries of interest, and have the advantage of requiring

significantly less computer resources. A pair of two-dimensional FDTD codes, 'TEA"

and "TMA", for transverse electric and transverse magnetic excitation, respectively, are

also included with this final report on magnetic media. Also included are companion
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computer codes "SWTEA" and "SWTMA", which convert the time domain output of

"TEA" and "TMA" to scattering width vs frequency. The user's manual for these codes is

also included with this report as an attachment [5]. A theoretical description and

validation results for the two-dimensional computer codes are contained in a preprint

included with this report as attachment [6].

EXTENSIONS TO DISPERSIVE FDTD CAPABILITIES

During this effort two extensions to our dispersive material FDTD capability were

made. One was the extension to include magnetic materials which have more

complicated frequency dependence of their permittivity than considered previously. The

time domain magnetic susceptibility has the form of a damped sinusoidal wave, resulting

from the oscillations of the microscopic currents in the material. Dispersive FDTD was

extended to include this class of materials, and these results are reported in a PhD

dissertation by Forrest Hunsberger that is included with this final report as attachment

[7]. Some of this material has already been presented at the recent IEEE AP-S

conference [8], and Dr. Hunsberger is currently writing papers based on this dissertation

for journal submission.

The other extension is to a time domain surface "impedance" formulation for lossy

conductors. As explained in attachment [9], this removes a difficulty in applying FDTD

to targets containing lossy materials. The difficulty is due to the necessity of reducing

the size of the FDTD cells which are inside the conducting materials. With the FDTD

surface "impedance" described in [9], FDTD cells need not be located inside the

conducting material but only at the surface. The attachment [9] preprint has already

been accepted for publication in IEEE Trans. on Antennas and Propagation. These

results have in part been presented at the recent IEEE AP-S symposium [10].

The approach used in [9] also extends the basic frequency dependent FDTD to a

wider class of materials. This is due to the method used in [9] to obtain the necessary

time domain convolution coefficients. With this method ANY material whose frequency

dependent behavior is known can have this information be transformed to the time

domain, and then with application of Prony's method (see [9]) the necessary exponential

coefficients for applying dispersive FDTD can be obtained.

PLATE SCATTERING

During the course of this research effort three different plate scattering

geometries were given special consideration. The first of these was suggested by Dr.

Randy Jost. It involved a conducting plate coated with a dielectric layer. This geometry

cannot readily be modeled using other scattering calculation methods. Scattering results
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for this geometry were calculated using one of our FDTD codes (the "FDTDA" code

furnished under this effort). The results were documented and are attached to this report

[11]. The results were previously furnished to Dr. Jost, and according to Dr. Jost they

showed significant correlation with measurements. We hope to continue this
investigation.

The second plate geometry considered was the "business card" plate geometry

being used as a test case by Dr. Alex Woo of NASA Ames. This geometry is challenging

since edge waves contribute to the scattering. Moment Method codes require

approximately 10 times the usual density of modes to accurately compute the scattering

from this geometry. Our results, shown in attachment [12] of this report, shown the
difference in RCS computed using FDTD and a Moment Method code. Dr. Woo

indicated that our results were quite accurate, considering that we used only 10 cells per

wavelength running on a 486 PC. We hope to run this data again using more cells per

wavelength, and compare our results directly with measurements.

The third topic considered was extending FDTD to include modeling of thin

impedance sheets. While applicable to arbitrary shapes and in both two and three

dimensions, the extension was validated by calculating RCS from thin fiat impedance

sheet plates. The results are reported in attachment [13].

NONLINEAR MATERIALS

Having extended the FDTD method to dispersive materials, another class of

materials which it would be desirable to include are nonlinear materials. During this

effort the current flowing in a wire antenna loaded with a nonlinear diode was

successfully computed using FDTD. The results are shown in the attached preprint [14].

With this capability RCS from scatters including nonlinear loads or bulk materials may

be computed using FDTD. Further extensions could include scattering of short pulses

from nonlinear dispersive materials including ferrite absorbers.

WIRE ANTENNAS

The accuracy available from the FDTD method was demonstrated by computing

the self impedance of a wire dipole antenna and the mutual impedance between two

wire antennas. These results are reported in attachment [15].
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CONCLUSIONS

During this effort the tasks specified in the Statement of Work have been

successfully completed. The extension of FDTD to more complicated materials has been

made. A three-dimensional FDTD code capable of modeling interactions with both
dispersive dielectric and magnetic materials has been written, validated, and documented.

This code is efficient and is capable of modeling interesting targets using a modest
computer work station platform.

However, in addition to the tasks in the Statement of Work, a significant number
of other FDTD extensions and calculations have been made. RCS results for two

different plate geometries have been reported. The FDTD method has been extended to

computing far zone time domain results in two dimensions. Finally, the capability to

model nonlinear materials has been incorporated into FDTD and validated.

The FDTD computer codes developed have been supplied, along with

documentation, and preprints describing the other FDTD advances have been included
with this report as attachments.
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I. INTRODUCTION

The Penn State Finite Difference Time Domain Electromagnetic

Scattering Code Version A is a three dimensional numerical

electromagnetic scattering code based upon the Finite Difference

Time Domain Technique (FDTD). The supplied version of the code

is one version of our current three dimensional FDTD code set.

This manual provides a description of the code and corresponding

results for the default scattering problem. The manual is

organized into fourteen sections: introduction, description of

the FDTD method, Operation, resource requirements, Version A code

capabilities, a brief description of the default scattering

geometry, a brief description of each subroutine, a description

of the include file (COMMONA.FOR), a section briefly discussing

Radar Cross Section (RCS) computations, a section discussing the

scattering results, a sample problem setup section, a new problem

checklist, references and figure titles.

II. FDTD METHOD

The Finite Difference Time Domain (FDTD) technique models

transient electromagnetic scattering and interactions with

objects of arbitrary shape and/or material composition. The

technique was first proposed by Yee [i] for isotropic, non-

dispersive materials in 1966; and has matured within the past

twenty years into a robust and efficient computational method.

The present FDTD technique is capabable of transient

electromagnetic interactions with objects of arbitrary and

complicated geometrical shape and material composition over a

large band of frequencies. This technique has recently been

extended to include dispersive dielectric materials, chiral

materials and plasmas.

In the FDTD method, Maxwell's curl equations are discretized

in time and space and all derivatives (temporal and spatial) are

approximated by central differences. The electric and magnetic

fields are interleaved in space and time and are updated in a

second-order accurate leapfrog scheme. The computational space

is divided into cells with the electric fields located on the

edges and the magnetic fields on the faces (see Figure i). FDTD

objects are defined by specifying dielectric and/or magnetic

material parameters at electric and/or magnetic field locations.

Two basic implementations of the FDTD method are widely used

for electromagnetic analysis: total field formalism and scattered

field formalism. In the total field formalism, the electric and

magnetic field are updated based upon the material type present

at each spatial location. In the scattered field formalism, the

incident waveform is defined analytically and the scattered field

is coupled to the incident field through the different material

types. For the incident field, any waveform, angle of incidence

and polarization is possible. The separation of the incident and



scattered fields conveniently allows an absorbing boundary to be
employed at the extremities of the discretized problem space to
absorb the scattered fields.

This code is a scattered field code, and the total E and H
fields may be found by combining the incident and scattered
fields. Any type of field quantity (incident, scattered, or
total), Poynting vector or current are available anywhere within

the computational space. These fields, incident, scattered and

total, may be found within, on or about the interaction object

placed in the problem space. By using a near to far field

transformation, far fields can be determined from the near fields

within the problem space thereby affording radiation patterns and

RCS values. The accuracy of these calculations is typically

within a dB of analytic solutions for dielectric and magnetic

sphere scattering. Further improvements are expected as better

absorbing boundary conditions are developed and incorporate d .

III. OPERATION

Typically, a truncated Gaussian incident waveform is used to

excite the system being modeled, however certain code versions

also provide a smooth cosine waveform for convenience in modeling

dispersive materials. The interaction object is defined in the

discretized problem space with arrays at each cell location

created by the discretization. All three dielectric material

types for E field components within a cell can be individually

specified by the arrays IDONE(I,J,K), IDTWO(I,J,K),

IDTHRE(I,J,K). This models arbitrary dielectric materials with

= _0- By an obvious extension to six arrays, magnetic materials

with _ _ _0 can be modeled.

Scattering occurs when the incident wave, marched forward in

time in small steps set by the Courant stability condition,

reaches the interaction object. Here a scattered wave must

appear along with the incident wave so that the Maxwell equations

are satisfied. If the material is a perfectly conductive metal

then only the well known boundary condition

scat inc
Etan = _Etan (i)

must be satisfied. For a nondispersive dielectric the

requirement is that the total field must satisfy the Maxwell

equations in the material:

VxE t°r = Vx(E inc+E scat) =-
i 0H t°t i a(H inc+H scar)

_o at _o 0t

(2)



_TxH t°t =Vx (H inc+H scat) :e
0E tot

+ oE t°t
at

(3)

=e a(E inc÷Escat) +o(Einc+Escat)

at
(4)

Additionally the incident wave, defined as moving unimpeded

through a vacuum in the problem space, satisfies everywhere in

the problem the Maxwell equations for free space

Vx E i_ = 1 @H jnc

_o at

(5)

_E inc
_7XH inc =e

o 0t

(6)

Subtracting the second set of equations from the first yields the

Maxwell equations governing the scattered fields in the material:

1 aH scat
Vx E scat= (7 )

_o at

aE inc

VxHSCat= (C-e°) at

E scat
-- +GE inc +e- +GE scat (8)

at

Outside the material this simplifies to:

1 aH scat
Vx E scat= (9 )

_o at

a E scat
_Tx H scat = e o-- ( 10 )

Ot

Magnetic materials, dispersive effects, non-linearities,

etc., are further generalizations of the above approach. Based

on the value of the material type, the subroutines for

calculating scattered E and H field components branch to the

appropriate expression for that scattered field component and
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that component is advanced in time according to the selected
algorithm. As many materials can be modeled as desired, the
number equals the dimension selected for the flags. If materials
with behavior different from those described above must be
modeled, then after the appropriate algorithm is found, the
code's branching structure allows easy incorporation of the new
behavior.

IV. RESOURCE REQUIREMENTS

The number of cells the problem space is divided into times

the six components per cell set the problem space storage

requirements

Storage=NC × 6 components/cell x 4 bytes/component (ii)

and the computational cost

Operations=NC x 6 comp/cell × i0 ops/component × N (12)

where N is the number of time steps desired.

N typically is on the order of ten times the number of cells

on one side of the problem space. More precisely for cubical

cells it takes _ time steps to traverse a single cell when the

time step is set by the Courant stability condition

AX
&t- _X = cell size dimension (13)

The condition on N is then that

I I

N - 10x(_NC _) NC _ ~ number cells on a side (14)
of the problem space

The earliest aircraft modeling using FDTD with approximately 30

cells on a side required approximately 500 time steps. For more

recent modeling with approximately i00 cells on a side, 2000 or

more time steps are used.

3
For (I00 cell) problem spaces, 24 MBytes of memory are

required to store the fields. Problems on the order of this size

have been run on a Silicon Graphics 4D 220 with 32 MBytes of

memory, IBM RISC 6000, an Intel 486 based machine, and VAX

11/785. Storage is only a problem as in the case of the 486

where only 16 MBytes of memory was available. 3This limited the
problem space size to approximately (80 cells) .
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3
For (I00 cell) problem_ with approximately 2000 time steps,

there is a total of 120 x i_ operations to perform. The speeds
of the previously mentioned machines are 24 MFLOPs (4 processor

upgraded version), i0 MFLgPS, 1.5 MFLOPS, _nd 0.2 MFLOPs. '0_erun times are then 5 x I0 seconds, 12 x i0 seconds, 80 x 13
seconds and 600 x i0 seconds, respectlvely. In hours the times
are 1.4, 3.3, 22.2 and 167 hours. Problems of this size are
possible on all but the last machine and can in fact be performed
on a personal computer (486) if one day turnarounds are
permissible.

V. VERSION A CODE CAPABILITIES

The Penn State University FDTD Electromagnetic Scattering

Code Version A has the following capabilities:

I) Ability to model lossy dielectric and perfectly conducting
scatterers.

2) First and second order outer radiation boundary condition

(ORBC) operating on the electric fields for dielectric or

perfectly conducting scatterers.

3) Near to far zone transformation capability to obtain far zone
scattered fields.

4) Gaussian and smooth cosine incident waveforms with arbitrary

incidence angles.

5) Near zone field, current or power sampling capability.

6) Companion code for computing Radar Cross Section (RCS).

VI. DEFAULT SCATTERING GEOMETRY

The code as delivered is set up to calculate the far zone

backscatter fields for an infinitely thin, 29 cm square,

perfectly conducting plate. The problem space size is 60 by 60

by 49 cells in the x, y and z directions, the cells are 1 cm

cubes, and the incident waveform is a _-polarized Gaussian pulse

with incidence angles of 8=45 and _=30 degrees. The output data

files are included as a reference along with a code (RCS3D.FOR)

for computing the frequency domain RCS using these output data

files. The ORBC is the second order absorbing boundary condition

set forth by Mur [2].

VII. SUBROUTINE DESCRIPTION

In the description for each subroutine, an asterisk (*) will

be placed by the subroutine name if that particular subroutine is

normally modified when defining a scattering problem.
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MAIN ROUTINE

The main routine in the program contains the calls for all
necessary subroutines to initialize the problem space and
scattering object(s) and for the incident waveform, far zone
transformation, field update subroutines, outer radiation
boundary conditions and field sampling.

The main routine begins with the include statement and then
appropriate data files are opened, and subroutines ZERO, BUILD
and SETUP are called to initialize variables and/or arrays, build
the object(s) and initialize the incident waveform and
miscellaneous parameters, respectively. Subroutine SETFZ is
called to intialize parameters for the near to far zone
transformation if far zone fields are desired.

The main loop is entered next, where all of the primary
field computations and data saving takes place. During each time
step cycle, the EXSFLD, EYSFLD, and EZSFLD subroutines are called
to update the x, y, and z components of the scattered electric
field. The six electric field outer radiation boundary
conditions (RADE??) are called next to absorb any outgoing
scattered fields. Time is then advanced 1/2 time step according
to the Yee algorithm and then the HXSFLD, HYSFLD, AND HZSFLD
subroutines are called to update the x, y, and z components of
scattered magnetic field. Time is then advanced another 1/2 step
and then either near zone fields are sampled and written to disk
in DATSAV, and/or the near zone to far zone vector potentials are
updated in SAVFZ. The parameter NZFZ (described later) in the
common file defines the type of output fields desired.

After execution of all time steps in the main field update
loop, subroutine FAROUT is called if far zone fields are desired
to compute the far zone fields and write them to disk. At this
point, the execution is complete.

SUBROUTINESETFZ

This subroutine initializes the necessary parameters
required for far zone field computations. The code as furnished
computes backscatter far zone fields and can compute bistatic far
zone fields for one scattering angle (i.e. one 8 and _ angle).
Refer to reference [3] for a complete description of the near to
far zone transformation. Other versions of this subroutine
provide for multiple bistatic angles.

SUBROUTINESAVFZ

This subroutine updates the near zone to far zone vector
potentials.
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SUBROUTINEFAROUT

This subroutine changes the near zone to far zone vector
potentials to far zone electric field 8 and @ components and
writes them to disk.

SUBROUTINEBUILD *

This subroutine "builds" the scattering object(s) by
initializing the IDONE, IDTWO, and IDTHRE arrays. The
IDONE-IDTHRE arrays are for specifying perfectly conducting and
lossy dielectric materials. Refer to Figure 1 for a diagram of
the basic Yee cell. For example, setting an element of the IDONE
array at some I,J,K location is actually locating dielectric
material at a cell edge whose center location is I+0.5,J,K.
Thus, materials with diagonal permittivity tensors can be
modeled. The default material type for all ID??? arrays is 0, or
free space. By initializing these arrays to values other than 0,
the user is defining an object by determining what material types
are present at each spatial location. Other material types
available for IDONE-IDTHRE are 1 for perfectly conducting objects
and 2-9 for lossy non-magnetic dielectrics. It is assumed
throughout the code that all dielectric materials are non-

magnetic (i.e. the materials have a permeability of _0)" This

subroutine also has a section that checks the ID??? arrays to

determine if legal material types have been defined throughout

the problem space. The actual material parameters (E and _) are

defined in subroutine SETUP. The default geometry is a 29 cm

square perfectly conducting plate.

The user must be careful that his/her object created in the

BUILD subroutine is properly formed.

When it is important to place the object in the center of

the problem space (to have lowest possible cross-pol scattering

for symmetric objects), NX etc. should be odd. This is due to

the field locations in the Yee cell and also the placement of the

E field absorbing boundary condition surfaces.

If the object being modeled has curved surfaces, edges, etc.

that are at an angle to one or more of the coordinate axes, then

that shape must be approximately modeled by lines and faces in a

"stair-stepped" (or stair-cased) fashion. This stair-cased

approximation introduces errors into computations at higher

frequencies. Intuitively, the error becomes smaller as more

cells are used to stair-case a particular object.

SUBROUTINE DCUBE

This subroutine builds cubes of dielectric material by

defining four each of IDONE, IDTWO and IDTHRE components

corresponding to one spatial cube of dielectric material. It can
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also be used to define thin (i.e. up to one cell thick)
dielectric or perfectly conducting plates. Refer to comments
within DCUBE for a description of the arguments and usage of the
subroutine.

SUBROUTINESETUP *

This subroutine initializes many of the constants required
for incident field definition, field update equations, outer
radiation boundary conditions and material parameters. The
material parameters £ and _ are defined for each material type
using the material arrays EPS and SIGMA respectively. The array
EPS is used for the total permittivity and SIGMA is used for the
electric conductivity. These arrays are initialized in SETUP to
free space material parameters for all material types and then
the user is required to modify these arrays for his/her
scattering materials. Thus, for the lossy dielectric material
type 2, the user must define EPS(2) and SIGMA(2). The remainder
of the subroutine computes constants used in field update
equations and boundary conditions and writes the diagnostics
file.

SUBROUTINE EXSFLD

This subroutine updates all x components of scattered
electric field at each time step except those on the outer
boundaries of the problem space. IF statements based upon the
IDONE array are used to determine the type of material present
and the corresponding update equation to be used. These
scattered field equations are based upon the development given in
[4].

SUBROUTINE EYSFLD

This subroutine updates all y components of scattered
electric field at each time step except those on the outer
boundaries of the problem space. IF statements based upon the
IDTWO array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINE EZSFLD

This subroutine updates all z components of scattered
electric field at each time step except those on the outer
boundaries of the problem space. IF statements based upon the
IDTHRE array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINESRADEYX, RADEZX, RADEZY, RADEXY, RADEXZ and RADEYZ

These subroutines apply the outer radiation boundary
conditions to the scattered electric field on the outer
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boundaries of the problem space.

SUBROUTINEHXSFLD

This subroutine updates all x components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEHYSFLD

This subroutine updates all y components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEHZSFLD

This subroutine updates all z components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEDATSAV *

This subroutine samples near zone scattered field quantities
and saves them to disk. This subroutine is where the quantities
to be sampled and their spatial locations are to be specified and
is on!y called if near zone fields only are desired_or_if hQ_h

near_and_Zar_zonefields_a_e_desir_exl. Total field quantities can

also be sampled. See comments within the subroutine for

specifying sampled scattered and/or total field quantities. When

sampling magnetic fields, remember the 6t/2 time difference

between E and H when writing the fields to disk. Sections of

code within this subroutine determine if the sampled quantities

and the spatial locations have been properly defined.

FUNCTIONS EXI, EYI and EZI

These functions are called to compute the x, y and z

components of incident electric field. The functional form of

the incident field is contained in a separate function SOURCE.

FUNCTION SOURCE *

This function contains the functional form of the incident

field. The code as furnished uses the Gaussian form of the

incident field. An incident smooth cosine pulse is also

available by uncommenting the required lines and commenting out

the Gaussian pulse. Thus, this function need only be modified if

the user changes the incident pulse from Gaussian to smooth

cosine. A slight improvement in computing speed and

vectorization may be achieved by moving this function inside each

of the incident field functions EXI, EYI and so on.
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FUNCTIONS DEXI, DEYI and DEZI

These functions are called to compute the x, y and z
components of the time derivative of incident electric field.
The functional form of the incident field is contained in a
separate function DSRCE.

FUNCTION DSRCE *

This function contains the functional form of the time
derivative of the incident field. The code as furnished uses the
time derivative of the Gaussian form of the incident field. A
smooth cosine pulse time derivative is also available by
uncommenting the required lines and commenting out the Gaussian
pulse. Thus, the function need only be modified if the user
changes from the Gaussian to smooth cosine pulse. Again, a
slight improvement in computing speed and vectorization may be
achieved by moving this function inside each of the time
derivative incident field functions DEXI, DEYI and so on.

SUBROUTINEZERO

This subroutine initializes various arrays and variables to
zero.

VIII. INCLUDE FILE DESCRIPTION (COMMONA.FOR) *

The include file, COMMONA.FOR, contains all of the arrays

and variables that are shared among the different subroutines.

This file will require the most modifications when defining

scattering problems. A description of the parameters that are

normally modified follows.

The parameters NX, NY and NZ specify the size of the problem

space in cells in the x, y and z directions respectively. For

problems where it is crucial to center the object within the

problem space, then NX, NY and NZ should be odd. The parameter

NTEST defines the number of near zone quantities to be sampled

and NZFZ defines the field output format. Set NZFZ=0 for near

zone fields only, NZFZ=I for far zone fields only and NZFZ=2 for

both near and far zone fields. Parameter NSTOP defines the

maximum number of time steps. DELX, DELY, and DELZ (in meters)

define the cell size in the x, y and z directions respectively.

The @ and _ incidence angles (in degrees) are defined by THINC

and PHINC respectively and the polarization is defined by ETHINC

and EPHINC. ETHINC=I.0, EPHINC=0.0 for 8-polarized incident

field and ETHINC=0.0, EPHINC=I.0 for _-polarized incident fiel_s.

Parameters AMP and BETA define the maximum amplitude and the e

temporal width of the incident pulse respectively. BETA

automatically adjusts when the cell size is changed and normally

should not be changed by the user. The far zone scattering

angles are defined by THETFZ and PHIFZ. The code as furnished
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performs backscatter computations, but these parameters could be
modified for a bistatic computation.

IX. RCS COMPUTATIONS

A companion code, RCS3D.FOR, has been included to compute

RCS versus frequency. It uses the file name of the FDTD far zone

output data (FZOUT3D.DAT) and writes a data file of far zone

electric fields versus time (FZTIME.DAT) and RCS versus frequency

(3DRCS.DAT). The RCS computations are performed up to the i0

cell/l 0 frequency limit. Refer to comments within this code for
further details.

X. RESULTS

As previously mentioned, the code as furnished models an

infinitely thin, 29 cm square, perfectly conducting plate and

computes backscatter far zone scattered fields at angles of 8=45

and _=30 degrees.

Figures 2-3 shows the co-polarized far zone electric field

versus time and the co-polarized RCS for the 29 cm square

perfectly conducting plate.

Figures 4-5 shows the cross-polarized far zone electric

field versus time and the cross-polarized RCS for the 29 cm

square perfectly conducting plate.

XI. SAMPLE PROBLEM SETUP

The code as furnished models an infinitely thin, 29 cm

square, perfectly conducting plate and computes backscatter far

zone scattered fields at angles of 8=45 and _=30 degrees. The

corresponding output data files are also provided, along with a

code to compute RCS using these data files. In order to change

the code to a new problem, many different parameters need to be

modified. A sample problem setup will now be discussed.

Suppose that the problem to be studied is RCS backscatter

versus frequency from a 28 cm by 31 cm perfectly conducting plate

with a 3 cm dielectric coating with a dielectric constant of 4_ 0

using a 8-polarized field. The backscatter angles are 8=30.0 and

_=60.0 degrees and the frequency range is up to 3 Ghz.

Since the frequency range is up to 3 Ghz, the cell size must

be chosen appropriately to resolve the field IN ANY MATERIAL at

the highest frequency of interest. A general rule is that the

cell size should be 1/10 of the wavelength at the highest

frequency of interest. For difficult geometries, 1/20 of a

wavelength may be necessary. The free space wavelength at 3 GHz

is 10=10 cm and the wavelength in the dielectric coating at 3 GHz
is 5 cm. The cell size is chosen as 1 cm, which provides a
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resolution of 5 cells/l in the dielectric coating and i0 cells/l 0
in free space. Numerical studies have shown that choosing the
cell size _ 1/4 of the shortest wavelength in any material is
the practical lower limit. Thus the cell size of 1 cm is barely
adequate. The cell size in the x, y and z directions is set in
the common file through variables DELX, DELY and DELZ. Next the
problem space size must be large enough to accomodate the
scattering object, plus at least a five cell boundary (I0 cells

is more appropriate) on every side of the object to allow for the

far zone field integration surface. It is advisable for plate

scattering to have the plate centered in the x and y directions

of the problem space in order to reduce the cross-polarized

backscatter and to position the plate low in the z direction to

allow strong specular reflections multiple encounters with the

ORBC. A I0 cell border is chosen, and the problem space size is

chosen as 49 by 52 by 49 cells in the x, y and z directions

respectively. As an initial estimate, allow 2048 time steps so

that energy trapped within the dielectric layer will radiate.

Thus parameters NX, NY and NZ in COMMONA.FOR would be changed to

reflect the new problem space size, and parameter NSTOP is

changed to 2048. If all transients have not been dissipated

after 2048 time steps, then NSTOP will have to be increased.

Truncating the time record before all transients have dissipated

will corrupt frequency domain results. Parameter NZFZ must be

equal to 1 since we are interested in far zone fields only. To

build the object, the following lines are inserted into the BUILD
subroutine:

C

C

C

C

C

C

BUILD THE DIELECTRIC SLAB FIRST

ISTART=II

JSTART=I1

KSTART=I1

NXWIDE=28

NYWIDE=31

NZWIDE=3

MTYPE=2

CALL DCUBE(ISTART,JSTART,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)

BUILD PEC PLATE NEXT

ISTART=II

JSTART=II

KSTART=II

NXWIDE=28

NYWIDE=31

NZWIDE=0

MTYPE=I

CALL DCUBE(ISTART,JSTART,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)
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The PEC plate is built last on the bottom of the dielectric
slab to avoid any air gaps between the dielectric material and
the PEC plate. In the common file, the incidence angles THINC
and PHINC have to be changed to 30.0 and 60.0 respectively, the
cell sizes (DELX, DELY, DELZ) are set to 0.01, and the
polarization is set to ETHINC=I.0 and EPHINC=0.0 for 8-polarized
fields. Since dielectric material 2 is being used for the
dielectric coating, the constitutive parameters EPS(2) and
SIGMA(2) are set to 4E0 and 0.0 respectively, in subroutine

SETUP. This completes the code modifications for the sample

problem.

XII. NEW PROBLEM CHECKLIST

This checklist provides a quick reference to determine if

all parameters have been defined properly for a given scattering

problem. A reminder when defining quantities within the code:

use MKS units and specify all angles in degrees.

COMMONA.FOR:

I) Is the problem space sized correctly? (NX, NY, NZ)

2) For near zone fields, is the number of sample points correct?

(NTEST)

3) Is parameter NZFZ defined correctly for desired field

outputs?

4) Is the number of time steps correct? (NSTOP)

5) Are the cell dimensions (DELX, DELY, DELZ) defined correctly?

6) Are the incidence angles (THINC, PHINC) defined correctly?

7) Is the polarization of the incident wave defined correctly

(ETHINC, EPHINC)?

8) For other than backscatter far zone field computations, are

the scattering angles set correctly? (THETFZ, PHIFZ)

SUBROUTINE BUILD:

i) Is the object completely and correctly specified?

SUBROUTINE SETUP:

i) Are the constitutive parameters for each material specified

correctly? (EPS and SIGMA)
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FUNCTIONS SOURCEand DSRCE:

I) If the Gaussian pulse is not desired, is it commented out and
the smooth cosine pulse uncommented?

SUBROUTINEDATSAV:

i) For near zone fields, are the sampled field types and spatial
locations correct for each sampling point? (NTYPE, IOBS, JOBS,
MOBS)
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XIV. FIGURE TITLES

Fig. 1 Standard three dimensional Yee cell showing placement

of electric and magnetic fields.

Fig. 2 Co-polarized far zone scattered field versus time for

29 cm square perfectly conducting plate.

Fig. 3 Co-polarized RCS versus frequency for 29 cm square

perfectly conducting plate.

Fig. 4 Cross-polarized far zone scattered field versus time

for 29 cm square perfectly conducting plate.

Fig. 5 Cross-polarized RCS versus frequency for 29 cm square

perfectly conducting plate.
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I. INTRODUCTION

The Penn State Finite Difference Time Domain Electromagnetic

Scattering Code Version B is a three dimensional numerical

electromagnetic scattering code based upon the Finite Difference

Time Domain Technique (FDTD). The supplied version of the code

is one version of our current three dimensional FDTD code set.

This manual provides a description of the code and corresponding

results for several scattering problems. The manual is organized

into fourteen sections: introduction, description of the FDTD

method, operation, resource requirements, Version B code

capabilities, a brief description of the default scattering

geometry, a brief description of each subroutine, a description

of the include file (COMMONB.FOR), a section briefly discussing

Radar Cross Section (RCS) computations, a section discussing some

scattering results, a sample problem setup section, a new problem

checklist, references and figure titles.

II. FDTD METHOD

The Finite Difference Time Domain (FDTD) technique models

transient electromagnetic scattering and interactions with

objects of arbitrary shape and/or material composition. The

technique was first proposed by Yee [i] for isotropic, non-

dispersive materials in 1966; and has matured within the past

twenty years into a robust and efficient computational method.

The present FDTD technique is capabable of transient

electromagnetic interactions with objects of arbitrary and

complicated geometrical shape and material composition over a

large band of frequencies. This technique has recently been

extended to include dispersive dielectric materials, chiral

materials and plasmas.

In the FDTD method, Maxwell's curl equations are discretized

in time and space and all derivatives (temporal and spatial) are

approximated by central differences. The electric and magnetic

fields are interleaved in space and time and are updated in a

second-order accurate leapfrog scheme. The computational space

is divided into cells with the electric fields located on the

edges and the magnetic fields on the faces (see Figure i). FDTD

objects are defined by specifying dielectric and/or magnetic

material parameters at electric and/or magnetic field locations.

Two basic implementations of the FDTD method are widely used

for electromagnetic analysis: total field formalism and scattered

field formalism. In the total field formalism, the electric and

magnetic field are updated based upon the material type present

at each spatial location. In the scattered field formalism, the

incident waveform is defined analytically and the scattered field

is coupled to the incident field through the different material

types. For the incident field, any waveform, angle of incidence

and polarization is possible. The separation of the incident and
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scattered fields conveniently allows an absorbing boundary to be
employed at the extremities of the discretized problem space to
absorb the scattered fields.

This code is a scattered field code, and the total E and H
fields may be found by combining the incident and scattered
fields. Any type of field quantity (incident, scattered, or
total), Poynting vector or current are available anywhere within

the computational space. These fields, incident, scattered and

total, may be found within, on or about the interaction object

placed in the problem space. By using a near to far field

transformation, far fields can be determined from the near fields

within the problem space thereby affording radiation patterns and

RCS values. The accuracy of these calculations is typically

within a dB of analytic solutions for dielectric and magnetic

sphere scattering. Further improvements are expected as better

absorbing boundary conditions are developed and incorporated.

III. OPERATION

Typically, a truncated Gaussian incident waveform is used to

excite the system being modeled, however certain code versions

also provide a smooth cosine waveform for convenience in modeling

dispersive materials. The interaction object is defined in the

discretized problem space with arrays at each cell location

created by the discretization. All three dielectric material

types for E field components within a cell can be individually

specified by the arrays IDONE(I,J,K), IDTWO(I,J,K),

IDTHRE(I,J,K). This models arbitrary dielectric materials with

= _0- By an obvious extension to six arrays, magnetic materials

with _ _ _0 can be modeled.

Scattering occurs when the incident wave, marched forward in

time in small steps set by the Courant stability condition,

reaches the interaction object. Here a scattered wave must

appear along with the incident wave so that the Maxwell equations

are satisfied. If the material is a perfectly conductive metal

then only the well known boundary condition

scat inc

Etan = -Eta, (I)

must be satisfied. For a nondispersive dielectric the

requirement is that the total field must satisfy the Maxwell

equations in the material:

VxE r°r = Vx(E inc+E scSr) =
1 aH t°t 1 a(H1nC+H scat)

_o at Po @t

(2)



_Tx H t°t = VX (H inc + Hscat) = e
aE tot

+oE t°t
Ot

(3)

=¢ O(EinC+ESCat ) +G(EinC+E scat)
at

(4)

Additionally the incident wave, defined as moving unimpeded

through a vacuum in the problem space, satisfies everywhere in

the problem the Maxwell equations for free space

VxE inc= 1 @H inc

/_o at

(5)

@E inc

_7X Hinc =¢o_
at

(6)

Subtracting the second set of equations from the first yields the

Maxwell equations governing the scattered fields in the material:

VX E scat= 1 @H scat

Po at

(7)

(gEinc

VxHsCat= (C-e°) at

@E scat
+oE inc +¢ __ +OE scat (8)

at

Outside the material this simplifies to:

1 aH scat
VX Escat =

#o at

(9)

@E scat
VxHsCat =¢o-- (10)

at

Magnetic materials, dispersive effects, non-linearities,

etc., are further generalizations of the above approach. Based

on the value of the material type, the subroutines for

calculating scattered E and H field components branch to the

appropriate expression for that scattered field component and



that component is advanced in time according to the selected
algorithm. As many materials can be modeled as desired, the
number equals the dimension selected for the flags. If materials
with behavior different from those described above must be
modeled, then after the appropriate algorithm is found, the
code's branching structure allows easy incorporation of the new
behavior.

IV. RESOURCE REQUIREMENTS

The number of cells the problem space is divided into times

the six components per cell set the problem space storage

requirements

Storage=NC x 6 components/cell x 4 bytes/component (11)

and the computational cost

Operations=NC x 6 comp/cell x i0 ops/component × N
(12)

where N is the number of time steps desired.

N typically is on the order of ten times the number of cells

on one side of the problem space. More precisely for cubical

cells it takes _ time steps to traverse a single cell when the

time step is set by the Courant stability condition

Ax
At- • X = cell size dimension (13)

The condition on N is then that

I I

10x(._..C_)VJ*_ NC _ ~ number cells on a side (14)N
of the problem space

The earliest aircraft modeling using FDTD with approximately 30

cells on a side required approximately 500 time steps. For more

recent modeling with approximately i00 cells on a side, 2000 or

more time steps are used.

For (i00 cell) 3 problem spaces, 24 MBytes of memory are

required to store the fields. Problems on the order of this size

have been run on a Silicon Graphics 4D 220 with 32 MBytes of

memory, IBM RISC 6000, an Intel 486 based machine, and VAX

11/785. Storage is only a problem as in the case of the 486

where only 16 MBytes of memory was available. 3This limited the

problem space size to approximately (80 cells) .



For (i00 cell) 3 problem_ with approximately 2000 time steps,

there is a total of 120 x i_ operations to perform. The speeds

of the previously mentioned machines are 24 MFLOPs (4 processor

upgraded version), I0 MFLgPS, 1.5 MFLOPS, ._nd 0.2 MFLOPs. '0_e
run times are then 5_x i0 seconds, 12 x i0 seconds, 80 x 1

3
seconds and 600 x i0 seconds, respectlvely. In hours the times

are 1.4, 3.3, 22.2 and 167 hours. Problems of this size are

possible on all but the last machine and can in fact be performed

on a personal computer (486) if one day turnarounds are

permissible.

V. VERSION B CODE CAPABILITIES

The Penn State University FDTD Electromagnetic Scattering

Code Version B has the following capabilities:

i) Ability to model lossy dielectric and perfectly conducting
scatterers.

2) Ability to model dispersive dielectric scatterers. This
dispersive FDTD method is now designated (FD) TD for Frequency-

Dependent Finite Difference Time Domain.

3) First and second order outer radiation boundary condition

(ORBC) operating on the electric fields.

4) Near to far zone transformation capability to obtain far zone
scattered fields.

5) Gaussian and smooth cosine incident waveforms with arbitrary

incidence angles.

6) Near zone field, current or power sampling capability.

7) Companion code for computing Radar Cross Section (RCS).

VI. DEFAULT SCATTERING GEOMETRY

The code as delivered is set up to calculate the far zone

backscatter fields for a 20 cm radius, dispersive, 0.25 dB

dielectric foam sphere. The 0.25 dB loaded foam is defined by a

frequency dependent permittivity with an effective DC

conductivity given by

- E + +

e0 ® l+J_r0 j_E 0

(15)

where E® is the infinite frequency permittivity, £s is the zero

frequency permittivity, [0 is the relaxation time and _ is the
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radian frequency. The 0.25 dB loaded foam parameters are
_®=I.06, Es=l.16, T0=0.6497 ns and G=2.954e-4. The problem space

size is 65 by 65 by 65 cells in the x, y and z directions, the

cells are 1 cm cubes, and the incident waveform is a _-polarized

smooth cosine pulse with incidence angles of 8=22.5 and _=22.5

degrees. The output data files are included as a reference along

with a code (RCS3D.FOR) for computing the frequency domain RCS

using these output data files. The ORBC is the second order

absorbing boundary condition set forth by Mur [2].

VII. SUBROUTINE DESCRIPTION

In the description for each subroutine, an asterisk (*) will

be placed by the subroutine name if that particular subroutine is

normally modified when defining a scattering problem.

MAIN ROUTINE

The main routine in the program contains the calls for all

necessary subroutines to initialize the problem space and

scattering object(s) and for the incident waveform, far zone

transformation, field update subroutines, outer radiation

boundary conditions and field sampling.

The main routine begins with the include statement and then

appropriate data files are opened, and subroutines ZERO, BUILD
and SETUP are called to initialize variables and/or arrays, build

the object(s) and initialize the incident waveform and

miscellaneous parameters, respectively. Subroutine SETFZ is

called to intialize parameters for the near to far zone

transformation if far zone fields are desired.

The main loop is entered next, where all of the primary

field computations and data saving takes place. During each time

step cycle, the EXSFLD, EYSFLD, and EZSFLD subroutines are called

to update the x, y, and z components of the scattered electric

field. The six electric field outer radiation boundary

conditions (RADE??) are called next to absorb any outgoing

scattered fields. Time is then advanced 1/2 time step according

to the Yee algorithm and then the HXSFLD, HYSFLD, AND HZSFLD

subroutines are called to update the x, y, and z components of

scattered magnetic field. Time is then advanced another 1/2 step

and then either near zone fields are sampled and written to disk

in DATSAV, and/or the near zone to far zone vector potentials are

updated in SAVFZ. The parameter NZFZ (described later) in the

common file defines the type of output fields desired.

After execution of all time steps in the main field update

loop, subroutine FAROUT is called if far zone fields are desired

to compute the far zone fields and write them to disk. At this

point, the execution is complete.
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SUBROUTINESETFZ

This subroutine initializes the necessary parameters
required for far zone field computations. The code as furnished
computes backscatter far zone fields and can compute bistatic far
zone fields for one scattering angle (i.e. one 8 and _ angle).
Refer to reference [3] for a complete description of the near to
far zone transformation. Other versions of this subroutine
provide for multiple bistatic angles.

SUBROUTINESAVFZ

This subroutine updates the near zone to far zone vector
potentials.

SUBROUTINEFAROUT

This subroutine changes the near zone to far zone vector
potentials to far zone electric field 8 and _ components and
writes them to disk.

SUBROUTINEBUILD *

This subroutine "builds" the scattering object(s) by
initializing the IDONE, IDTWO, and IDTHRE arrays to specify
perfectly conducting, lossy dielectrics and dispersive dielectric
materials. Refer to Figure 1 for a diagram of the basic Yee
cell. Setting an element of the IDONE array at some I,J,K
location is actually locating dielectric material at a cell edge
whose center location is I+0.5,J,K. Thus, materials with
diagonal permittivity tensors can be modeled. The default
material type for all ID??? arrays is 0, or free space. By
initializing these arrays to values other than 0, the user is
defining an object by determining what material types are present
at each spatial location. Other material types available for
IDONE-IDTHRE are 1 for perfectly conducting objects, 2-9 for
lossy non-magnetic dielectrics, 20-29 for dispersive dielectrics.
This code assumes that al__!ldielectric and dispersive dielectric
materials have a permeability of _0- This subroutine also has a
section that checks the ID??? arrays to determine if legal
material types have been defined throughout the problem space.
The actual non-dispersive material parameters (_, _, and a) are
defined in subroutine SETUP. The dispersive material parameters

(_s, E®, _0, a) are also defined in a separate section in SETUP.
The default geometry is a 20 cm radius, dispersive, 0.25 dB
dielectric foam sphere.

The user must be careful that his/her object created in the
BUILD subroutine is properly formed.
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When it is important to place the object in the center of
the problem space (to have lowest possible cross-pol scattering
for symmetric objects), NX etc. should be odd. This is due to
the field locations in the Yee cell and also the placement of the
E field absorbing boundary condition surfaces.

If the object being modeled has curved surfaces, edges, etc.
that are at an angle to one or more of the coordinate axes, then
that shape must be approximately modeled by lines and faces in a
"stair-stepped" (or stair-cased) fashion. This stair-cased
approximation introduces errors into computations at higher
frequencies. Intuitively, the error becomes smaller as more
cells are used to stair-case a particular object. Thus, the
default 0.25 dB dielectric foam sphere scattering geometry is a
stair-cased sphere.

SUBROUTINEDCUBE

This subroutine builds cubes of dielectric material by
defining four each of IDONE, IDTWO and IDTHRE components
corresponding to one spatial cube of dielectric material. It can
also be used to define thin (i.e. up to one cell thick)
dielectric or perfectly conducting plates. Refer to comments
within DCUBE for a description of the arguments and usage of the
subroutine.

SUBROUTINESETUP *

This subroutine initializes many of the constants required
for incident field definition, field update equations, outer
radiation boundary conditions and material parameters. The
material parameters E and a are defined for each material type
(non-dispersive) using the material arrays EPS and SIGMA
respectively. The array EPS is used for the total permittivity,
and SIGMA is used for the electric conductivity. These arrays
are initialized in SETUP to free space material parameters for
all material types and then the user is required to modify these
arrays for his/her scattering materials. Thus, for the lossy
dielectric material type 2, the user must define EPS(2) and
SIGMA( 2) .

For dispersive dielectric materials, different material
parameter arrays are used. The functional form of the frequency
dependent permittivity that was implemented in the code is the
Debye relaxation [4] with an effective DC conductivity given by

a
E(6a) = _I-jE 11= (®E0+ EOXe((_)+ -- (16)
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where the frequency dependent electric susceptibility function is
defined as

es - e_

Xe(_) - 1 + j_)z 0 (17)

where E® is the infinite frequency permittivity, E s is the zero

frequency permittivity, r 0 is the relaxation time, a is the

effective electric conductivity, and _ is the radian frequency.

The corresponding time domain susceptibility function is given by

[_s - E'I (-t/_O)u(t) (18)xe(t) = e
T0

The FDTD implementation of frequency dependent permittivity

involves a convolution with the electric field and interested

readers are referred to references [5-6] for further details.

For dispersive dielectric materials, the corresponding

material parameter arrays are EPSINF (E.), EPSSTA (Es), RELAXT

(To) , and RELSIG (a). These dispersive material parameters are

defined under the DISPERSIVE SETUP portion of the subroutine.

The remainder of the subroutine computes constants used in field

update equations and boundary conditions and writes the

diagnostics file.

SUBROUTINE EXSFLD

This subroutine updates all x components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDONE array are used to determine the type of material present

and the corresponding update equation to be used. These

scattered field equations are based upon the development given in

[7] .

SUBROUTINE EYSFLD

This subroutine updates all y components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDTWO array are used to determine the type of material present

and the corresponding update equation to be used.
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SUBROUTINEEZSFLD

This subroutine updates all z components of scattered
electric field at each time step except those on the outer
boundaries of the problem space. IF statements based upon the
IDTHRE array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINESRADEYX, RADEZX, RADEZY, RADEXY, RADEXZ and RADEYZ

These subroutines apply the outer radiation boundary
conditions to the scattered electric field on the outer
boundaries of the problem space.

SUBROUTINEHXSFLD

This subroutine updates all x components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEHYSFLD

This subroutine updates all y components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEHZSFLD

This subroutine updates all z components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEDATSAV *

This subroutine samples near zone scattered field quantities
and saves them to disk. This subroutine is where the quantities
to be sampled and their spatial locations are to be specified and
is only called if near zone fields only are desired or if both
near and far zone fields are desired. Total field quantities can
also be sampled. See comments within the subroutine for
specifying sampled scattered and/or total field quantities. When
sampling magnetic fields, remember the 6t/2 time difference

between E and H when writing the fields to disk. Sections of

code within this subroutine determine if the sampled quantities

and the spatial locations have been properly defined.

FUNCTIONS EXI, EYI and EZI

These functions are called to compute the x, y and z

components of incident electric field. The functional form of

the incident field is contained in a separate function SOURCE.
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FUNCTION SOURCE*

This function contains the functional form of the incident
field. The code as furnished uses the smooth cosine form of the
incident field. An incident Gaussian pulse is also available by
uncommenting the required lines and commenting out the smooth
cosine pulse. Thus, this function need only be modified if the
user changes the incident pulse from smooth cosine to Gaussian.
Currently, _ the smooth cosine pulse can be used for

scattering from dispersive targets. A slight improvement in

computing speed and vectorization may be achieved by moving this
function inside each of the incident field functions EXI, EYI and

so on.

FUNCTIONS DEXI, DEYI and DEZI

These functions are called to compute the x, y and z

components of the time derivative of incident electric field.

The functional form of the incident field is contained in a

separate function DSRCE.

FUNCTIONS DEXIXE, DEYIXE and DEZIXE

These functions compute the x, y and z components of the
convolution of the time derivative of the incident field with the

electric Debye susceptibility function X.

FUNCTION DSRCE *

This function contains the functional form of the time

derivative of the incident field. The code as furnished uses the

time derivative of the smooth cosine form of the incident field.

A Gaussian pulse time derivative is also available by

uncommenting the required lines and commenting out the smooth

cosine pulse. Thus, the function need only be modified if the

user changes from the smooth cosine to Gaussian pulse. Again, a

slight improvement in computing speed and vectorization may be

achieved by moving this function inside each of the time

derivative incident field functions DEXI, DEYI and so on.

FUNCTION DCONV

This function evaluates the convolution of the time

derivative of the incident field with the Debye susceptibility

function X-

SUBROUTINE ZERO

This subroutine initializes various arrays and variables to

zero.
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VIII. INCLUDE FILE DESCRIPTION (COMMONB.FOR) *

The include file, COMMONB.FOR, contains all of the arrays

and variables that are shared among the different subroutines.

This file will require the most modifications when defining

scattering problems. A description of the parameters that are

normally modified follows.

The parameters NX, NY and NZ specify the size of the problem

space in cells in the x, y and z directions respectively. For

problems where it is crucial to center the object within the

problem space, then NX, NY and NZ should be odd. The parameter

NTEST defines the number of near zone quantities to be sampled

and NZFZ defines the field output format. Set NZFZ=0 for near

zone fields only, NZFZ=I for far zone fields only and NZFZ=2 for
both near and far zone fields. Parameter NLDg_AT defines the

total number of material types that are available for use.

NEDISP defines the number of dispersive dielectric materials that

are being used. Parameter NSTOP defines the maximum number of

time steps. DELX, DELY, and DELZ (in meters) define the cell

size in the x, y and z directions respectively. The 8 and

incidence angles (in degrees) are defined by THINC and PHINC

respectively and the polarization is defined by ETHINC and

EPHINC. ETHINC=I.0, EPHINC=0.0 for 8-polarized incident field

and ETHINC=0.0, EPHINC=I.0 for _-polarized incident fields. -2
Parameters AMP and BETA define the maximum amplitude and the e

temporal width of the incident pulse respectively. BETA

automatically adjusts when the cell size is changed and normally

should not be changed by the user. The far zone scattering

angles are defined by THETFZ and PHIFZ. The code as furnished

performs backscatter computations, but these parameters could be

modified for a bistatic computation.

IX. RCS COMPUTATIONS

A companion code, RCS3D.FOR, has been included to cgmpute

RCS versus frequency. It uses the file name of the (FD)-TD far

zone output data (FZOUT3D.DAT) and writes data files of far zone

electric fields versus time (FZTIME.DAT) and RCS versus frequency

(3DRCS.DAT). The RCS computations are performed up to the I0

cell/l 0 frequency limit. Refer to comments within this code for
further details.

X. RESULTS

As previously mentioned, the code as furnished models a 20

cm radius, dispersive, 0.25 dB dieletric foam sphere and computes

backscatter far zone scattered fields at angles of 8=22.5 and

_=22.5 degrees. Results are included for the 0.25 dB dielectric

foam sphere and for a 60 dB dielectric foam sphere. The material

parameters for 0.25 dB and 60 dB loaded foam are:
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0.25 DB FOAM 60 DB FOAM

1.16 _s 41.0

1.01 6® 1.6

0.6497 ns 70 0.3450 ns

2.954E-04 S/m 0 3.902E-01 S/m

For the 0.25 dB foam there are i0 cells per wavelength at

approximately 3.0 GHz. For the 60 dB foam there are I0 cells per

wavelength at approximately 2.35 GHz, as the 60 dB foam has a

higher dielectric constant.

Figures 2-7 show the real and imaginary parts of the 0.25 dB

and 60 dB foam permeability and the dielectric susceptibilities

versus time for both materials.

Figures 8-11 show the co-polarized far zone electric field

versus time and the co-polarized RCS for the 0.25 dB and 60 dB

dielectric foam spheres respectively.

XI. SAMPLE PROBLEM SETUP

The code as furnished models a 20 cm radius, dispersive,

0.25 dB dielectric foam sphere and computes backscatter far zone

scattered fields at angles of 8=22.5 and _=22.5 degrees. The

corresponding output data files are also provided, along with a

code to compute Radar Cross Section using these data files. In

order to change the code to a new problem, many different

parameters need to be modified. A sample problem setup will now

be discussed.

Suppose that the problem to be studied is RCS backscatter

versus frequency from a 28 cm by 31 cm perfectly conducting plate

with a 3 cm dielectric coating with a dielectric constant of 4E 0

using a 8-polarized field. The backscatter angles are 8=30.0 and

_=60.0 degrees and the frequency range is up to 3 Ghz.

Since the frequency range is up to 3 Ghz, the cell size must

be chosen appropriately to resolve the field IN ANY MATERIAL at

the highest frequency of interest. A general rule is that the

cell size should be I/I0 of the wavelength at the highest

frequency of interest. For difficult geometries, 1/20 of a

wavelength may be necessary. The free space wavelength at 3 GHz

is 10=lO cm and the wavelength in the dielectric coating at 3 GHz
is 5 cm. The cell size is chosen as 1 cm, which provides a

resolution of 5 cells/l in the dielectric coating and i0 cells/l 0

in free space. Numerical studies have shown that choosing the

cell size _ 1/4 of the shortest wavelength in any material is

the practical lower limit. Thus the cell size of 1 cm is barely

adequate. The cell size in the x, y and z directions is set in
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the common file through variables DELX, DELY and DELZ. Next the
problem space size must be large enough to accomodate the
scattering object, plus at least a five cell boundary (I0 cells

is more appropriate) on every side of the object to allow for the

far zone field integration surface. It is advisable for plate

scattering to have the plate centered in the x and y directions

of the problem space in order to reduce the cross-polarized

backscatter and to position the plate low in the z direction to

allow strong specular reflections multiple encounters with the

ORBC. A i0 cell border is chosen, and the problem space size is

chosen as 49 by 52 by 49 cells in the x, y and z directions

respectively. As an initial estimate, allow 2048 time steps so

that energy trapped within the dielectric layer will radiate.

Thus parameters NX, NY and NZ in COMMONB.FOR would be changed to

reflect the new problem space size, and parameter NSTOP is

changed to 2048. If all transients have not been dissipated

after 2048 time steps, then NSTOP will have to be increased.

Truncating the time record before all transients have dissipated

will corrupt frequency domain results. Parameter NZFZ must be

equal to 1 since we are interested in far zone fields only. To

build the object, the following lines are inserted into the BUILD

subroutine:

C

C

C

C

C

C

BUILD THE DIELECTRIC SLAB FIRST

ISTART=II

JSTART=II

KSTART=II

NXWIDE=28

NYWIDE=31

NZWIDE=3

MTYPE=2

CALL DCUBE(ISTART,JSTART,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)

BUILD PEC PLATE NEXT

ISTART=II

JSTART=II

KSTART=II

NXWIDE=28

NYWIDE=31

NZWIDE=0

MTYPE=I

CALL DCUBE(ISTART,JSTART,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)

The PEC plate is built last on the bottom of the dielectric

slab to avoid any air gaps between the dielectric material and

the PEC plate. In the common file, the incidence angles THINC

and PHINC have to be changed to 30.0 and 60.0 respectively, the

cell sizes (DELX, DELY, DELZ) are set to 0.01, and the

polarization is set to ETHINC=I.0 and EPHINC=0.0 for 8-polarized
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fields. Since dielectric material 2 is being used for the
dielectric coating, the constitutive parameters EPS(2) and
SIGMA(2) are set to 4_D and 0.0 respectively, in subroutine
SETUP. This completes the code modifications for the sample
problem.

XII. NEW PROBLEM CHECKLIST

This checklist provides a quick reference to determine if

all parameters have been defined properly for a given scattering

problem. A reminder when defining quantities within the code:

use MKS units and specify all angles in degrees.

COMMONB.FOR:

1) Is the problem space sized correctly? (NX, NY, NZ)

2) For near zone fields, is the number of sample points correct?

(NTEST)

3) Is parameter NZFZ defined correctly for desired field

outputs?

4) Is the number of dispersive dielectric (NEDISP) materials

defined correctly?

5) Is the number of time steps correct? (NSTOP)

6) Are the cell dimensions (DELX, DELY, DELZ) defined correctly?

7) Are the incidence angles (THINC, PHINC) defined correctly?

8) Is the polarization of the incident wave defined correctly

(ETHINC, EPHINC)?

9) For other than backscatter far zone field computations, are

the scattering angles set correctly? (THETFZ, PHIFZ)

SUBROUTINE BUILD:

1) Is the object completely and correctly specified?

SUBROUTINE SETUP:

1) Are the constitutive parameters for each material specified

correctly? (EPS and SIGMA)

2) Are the constitutive parameters for each dispersive material

defined correctly? (EPSSTA, EPSINF, RELAXT, RELSIG)
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FUNCTIONS SOURCEand DSRCE:

i) If the smooth cosine pulse is not desired, is it commented
out and the Gaussian pulse uncommented?

SUBROUTINEDATSAV:

I) For near zone fields, are the sampled field types and spatial
locations correct for each sampling point? (NTYPE, IOBS, JOBS,
MOBS)
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XIV. FIGURE TITLES

Fig. 1 Standard three dimensional Yee cell showing placement

of electric and magnetic fields.

Fig. 2 Real part of relative permittivity versus frequency for

0.25 dB dielectric foam.
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Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. i0

Fig. ii
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Imaginary part of relative permittivity versus
frequency for 0.25 dB dielectric foam.

Relative dielectric susceptibility versus time for 0.25
dB dielectric foam.

Real part of relative permittivity versus frequency for
60 dB dielectric foam.

Imaginary part of relative permittivity versus
frequency for 60 dB dielectric foam.

Relative electric susceptibility versus time for 60 dB
dielectric foam.

Co-polarized far zone scattered field versus time for

0.25 dB dielectric foam sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

0.25 dB dielectric foam sphere with 20 cm radius.

Co-polarized far zone scattered field versus time for

60 dB dielectric foam sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

60 dB dielectric foam sphere with 20 cm radius.
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I. INTRODUCTION

The Penn State Finite Difference Time Domain Electromagnetic

Scattering Code Version C is a three dimensional numerical

electromagnetic scattering code based upon the Finite Difference

Time Domain Technique (FDTD). The supplied version of the code

is one version of our current three dimensional FDTD code set.

This manual provides a description of the code and corresponding

results for several scattering problems. The manual is organized

into fourteen sections: introduction, description of the FDTD

method, operation, resource requirements, Version C code

capabilities, a brief description of the default scattering

geometry, a brief description of each subroutine, a description

of the include file (COMMONC.FOR), a section briefly discussing

Radar Cross Section (RCS) computations, a section discussing some

scattering results, a sample problem setup section, a new problem

checklist, references and figure titles.

II. FDTD METHOD

The Finite Difference Time Domain (FDTD) technique models

transient electromagnetic scattering and interactions with

objects of arbitrary shape and/or material composition. The

technique was first proposed by Yee [i] for isotropic, non-

dispersive materials in 1966; and has matured within the past

twenty years into a robust and efficient computational method.

The present FDTD technique is capabable of transient

electromagnetic interactions with objects of arbitrary and

complicated geometrical shape and material composition over a

large band of frequencies. This technique has recently been

extended to include dispersive dielectric materials, chiral

materials and plasmas.

In the FDTD method, Maxwell's curl equations are discretized

in time and space and all derivatives (temporal and spatial) are

approximated by central differences. The electric and magnetic

fields are interleaved in space and time and are updated in a

second-order accurate leapfrog scheme. The computational space
is divided into cells with the electric fields located on the

edges and the magnetic fields on the faces (see Figure i). FDTD

objects are defined by specifying dielectric and/or magnetic

material parameters at electric and/or magnetic field locations.

Two basic implementations of the FDTD method are widely used

for electromagnetic analysis: total field formalism and scattered

field formalism. In the total field formalism, the electric and

magnetic field are updated based upon the material type present

at each spatial location. In the scattered field formalism, the

incident waveform is defined analytically and the scattered field

is coupled to the incident field through the different material

types. For the incident field, any waveform, angle of incidence

and polarization is possible. The separation of the incident and
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scattered fields conveniently allows an absorbing boundary to be
employed at the extremities of the discretized problem space to
absorb the scattered fields.

This code is a scattered field code, and the total E and H
fields may be found by combining the incident and scattered
fields. Any type of field quantity (incident, scattered, or
total), Poynting vector or current are available anywhere within

the computational space. These fields, incident, scattered and

total, may be found within, on or about the interaction object

placed in the problem space. By using a near to far field

transformation, far fields can be determined from the near fields

within the problem space thereby affording radiation patterns and

RCS values. The accuracy of these calculations is typically

within a dB of analytic solutions for dielectric and magnetic

sphere scattering. Further improvements are expected as better

absorbing boundary conditions are developed and incorporated.

III. OPERATION

Typically, a truncated Gaussian incident waveform is used to

excite the system being modeled, however certain code versions

also provide a smooth cosine waveform for convenience in modeling

dispersive materials. The interaction object is defined in the

discretized problem space with arrays at each cell location

created by the discretization. All three dielectric material

types for E field components within a cell can be individually

specified by the arrays IDONE(I,J,K), IDTWO(I,J,K),

IDTHRE(I,J,K). This models arbitrary dielectric materials with

= _0" By an obvious extension to six arrays, magnetic materials

with _ _ _0 can be modeled.

Scattering occurs when the incident wave, marched forward in

time in small steps set by the Courant stability condition,

reaches the interaction object. Here a scattered wave must

appear along with the incident wave so that the Maxwell equations

are satisfied. If the material is a perfectly conductive metal

then only the well known boundary condition

scat inc
Etan = -Etan (i)

must be satisfied. For a nondispersive dielectric the

requirement is that the total field must satisfy the Maxwell

equations in the material:

VxE t°t = V×(E inc+E scat) =
1 aH t°t 1 a(H inc+H scat )

_o at _o at

(2)
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_TXH t°t =_7x (H inc +H scat) = e
aE tot

+o.E tot
at

(3)

a (E inc+ E scat) Einc + Escat=e +o( )
at

(4)

Additionally the incident wave, defined as moving unimpeded

through a vacuum in the problem space, satisfies everywhere in

the problem the Maxwell equations for free space

1 aH inc
_Tx E inc-

_o at

(5)

@E inc
VXH inc=_:

o at
(6)

Subtracting the second set of equations from the first yields the

Maxwell equations governing the scattered fields in the material:

1 @H scat
Vx E scat- (7 )

#o at

@E inc

VxHsCat= (e-e°) at

a E scat
+oE inc+e_ +oE scat (8)

at

Outside the material this simplifies to:

1 aH scat
XTX E scat =

Po at

(9)

aE scat
Vx H scat = e

o at
(10)

Magnetic materials, dispersive effects, non-linearities,

etc., are further generalizations of the above approach. Based

on the value of the material type, the subroutines for

calculating scattered E and H field components branch to the

appropriate expression for that scattered field component and



that component is advanced in time according to the selected
algorithm. As many materials can be modeled as desired, the
number equals the dimension selected for the flags. If materials
with behavior different from those described above must be
modeled, then after the appropriate algorithm is found, the
code's branching structure allows easy incorporation of the new
behavior.

IV. RESOURCE REQUIREMENTS

The number of cells the problem space is divided into times

the six components per cell set the problem space storage

requirements

Storage=NC × 6 components/cell x 4 bytes/component (Ii)

and the computational cost

Operations=NC x 6 comp/cell x i0 ops/component x N (12)

where N is the number of time steps desired.

N typically is on the order of ten times the number of cells

on one side of the problem space. More precisely for cubical

cells it takes _ time steps to traverse a single cell when the

time step is set by the Courant stability condition

Ax
At- _x = cell size dimension (13)

The condition on N is then that

I I

N - 10x(_3NC _) NC _ ~ number cells on a side (14)
of the problem space

The earliest aircraft modeling using FDTD with approximately 30

cells on a side required approximately 500 time steps. For more

recent modeling with approximately i00 cells on a side, 2000 or

more time steps are used.

3
For (i00 cell) problem spaces, 24 MBytes of memory are

required to store the fields. Problems on the order of this size

have been run on a Silicon Graphics 4D 220 with 32 MBytes of

memory, IBM RISC 6000, an Intel 486 based machine, and VAX

11/785. Storage is only a problem as in the case of the 486

where only 16 MBytes of memory was available. This limited the

problem space size to approximately (80 cells) 3.
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For (i00 cell) problem_ with approximately 2000 time steps,

there is a total of 120 x i_ operations to perform. The speeds

of the previously mentioned machines are 24 MFLOPs (4 processor

upgraded version), i0 MFL_PS, 1.5 MFLOPS, _nd 0.2 MFLOPs. T_e

run times are then 53x i0 seconds, 12 x i0 seconds, 80 x i0
seconds and 600 x i0 seconds, respectively. In hours the times

are 1.4, 3.3, 22.2 and 167 hours. Problems of this size are

possible on all but the last machine and can in fact be performed

on a personal computer (486) if one day turnarounds are

permissible.

V. VERSION C CODE CAPABILITIES

The Penn State University FDTD Electromagnetic Scattering

Code Version C has the following capabilities:

i) Ability to model lossy dielectric and perfectly conducting
scatterers.

2) Ability to model lossy magnetic scatterers.

3) First and second order outer radiation boundary condition

(ORBC) operating on the electric fields for dielectric

scatterers.

4) First and second order ORBC operating on the magnetic fields

for magnetic scatterers.

5) Near to far zone transformation capability to obtain far zone
scattered fields.

6) Gaussian and smooth cosine incident waveforms with arbitrary

incidence angles.

7) Near zone field, current or power sampling capability.

8) Companion code for computing Radar Cross Section (RCS).

VI. DEFAULT SCATTERING GEOMETRY

The code as delivered is set up to calculate the far zone

backscatter fields for a 20.cm radius, lossy magnetic sphere with

parameters _=E0, _=4_0 and a =2.8413E+4. The problem space size

is 66 by 66 by 66 cells in the x, y and z directions, the cells

are 0.01 cm cubes, and the incident waveform is a _-polarized

Gaussian pulse with incidence angles of 8=22.5 and _=22.5

degrees. The output data files are included as a reference along

with a code (RCS3D.FOR) for computing the frequency domain RCS

using these output data files. The ORBC is the second order

absorbing boundary condition set forth by Mur [2].
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VII. SUBROUTINE DESCRIPTION

In the description for each subroutine, an asterisk (*) will

be placed by the subroutine name if that particular subroutine is

normally modified when defining a scattering problem.

MAIN ROUTINE

The main routine in the program contains the calls for all

necessary subroutines to initialize the problem space and

scattering object(s) and for the incident waveform, far zone

transformation, field update subroutines, outer radiation

boundary conditions and field sampling.

The main routine begins with the include statement and then

appropriate data files are opened, and subroutines ZERO, BUILD

and SETUP are called to initialize variables and/or arrays, build

the object(s) and initialize the incident waveform and

miscellaneous parameters, respectively. Subroutine SETFZ is

called to intialize parameters for the near to far zone

transformation if far zone fields are desired.

The main loop is entered next, where all of the primary

field computations and data saving takes place. During each time

step cycle, the EXSFLD, EYSFLD, and EZSFLD subroutines are called

to update the x, y, and z components of the scattered electric

field. The six electric field outer radiation boundary

conditions (RADE??) are called next to absorb any outgoing

scattered fields for perfectly conducting or lossy dielectric

scatterers. Time is then advanced 1/2 time step according to the

Yee algorithm and then the HXSFLD, HYSFLD, AND HZSFLD subroutines

are called to update the x, y, and z components of scattered

magnetic field. The six magnetic field outer radiation boundary

conditions (RADH??) are called next to absorb any outgoing

scattered fields for lossy magnetic scatterers. Time is then

advanced another 1/2 step and then either near zone fields are

sampled and written to disk in DATSAV, and/or the near zone to

far zone vector potentials are updated in SAVFZ. The parameter

NZFZ (described later) in the common file defines the type of

output fields desired.

After execution of all time steps in the main field update

loop, subroutine FAROUT is called if far zone fields are desired

to compute the far zone fields and write them to disk. At this

point, the execution is complete.

SUBROUTINE SETFZ

This subroutine initializes the necessary parameters

required for far zone field computations. The code as furnished

computes backscatter far zone fields and can compute bistatic far

zone fields for one scattering angle (i.e. one @ and _ angle).
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Refer to reference [3] for a complete description of the near to
far zone transformation. Other versions of this subroutine
provide for multiple bistatic angles.

SUBROUTINESAVFZ

This subroutine updates the near zone to far zone vector
potentials.

SUBROUTINEFAROUT

This subroutine changes the near zone to far zone vector
potentials to far zone electric field 8 and _ components and
writes them to disk.

SUBROUTINEBUILD *

This subroutine "builds" the scattering object(s) by
initializing the IDONE, IDTWO, IDTHRE, IDFOR, IDFIV and IDSIX
arrays. The IDONE-IDTHRE arrays are for specifying perfectly
conducting and lossy dielectric materials. The IDFOR-IDSIX
arrays are for lossy magnetic materials. The reason for the
separate arrays is so the user can independently control the
exact placement of dielectric and magnetic material in the Yee
cells. Refer to Figure 1 for a diagram of the basic Yee cell.
For example, setting an element of the IDONE array at some I,J,K
location is actually locating dielectric material at a cell edge
whose center location is I+0.5,J,K. Setting an element of the
IDFOR array at some I,J,K location is actually locating magnetic
material perpendicular to a cell face whose center location is
I,J+0.5,K+0.5, or equivalently, locating magnetic material at an
edge on the dual H field mesh. The difference between the IDONE
and IDFOR array locations is a direct result of the field offsets
in the Yee cell (see Figure i). Thus, materials with diagonal
permittivity and/or diagonal permeability tensors can be modeled.
The default material type for all ID??? arrays is 0, or free
space. By initializing these arrays to values other than 0, the
user is defining an object by determining what material types are
present at each spatial location. Other material types available
for IDONE-IDTHRE are 1 for perfectly conducting objects, and 2-9
for lossy dielectrics. IDONE-IDTHRE are normally set to 0 for
magnetic scatterers. Other material types available for IDFOR-
IDSIX are 10-19 for lossy magnetic materials. IDFOR-IDSIX are
normally set to 0 for perfectly conducting or dielectric
scatterers. If the user wants a material with both dielectric
and magnetic properties (i.e. permittivity other than E0 for
magnetic materials, and permeability other than _0 for dielectric
materials), then he/she must define IDONE-IDSIX for that
particular material. This subroutine also has a section that
checks the ID??? arrays to determine if legal material types have
been defined throughout thg problem space. The actual material
parameters (_, _, a, and a ) are defined in subroutine SETUP.
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The default geometry is a 20 cm radius, lossy magnetic sphere.

The user must be careful that his/her object created in the
BUILD subroutine is properly formed. There is not a direct
one-to-one correspondence between the dielectric and magnetic
ID??? arrays. However, one can define a correspondence, so that
code used to generate a dielectric object can be modified to
generate a magnetic object.

To see this consider that we have set the permittivity at
cell locations corresponding to

EX(I,J,K), EY(I,J,K), EZ(I,J,K)

using the IDONE, IDTWO, and IDTHRE arrays respectively. This
determines one corner of a dielectric cube. If we wish to define
the corner of a corresponding magnetic cube, offset 1/2 cell in
the x, y, z directions, we would set the locations of the
magnetic fields

HX(I+I,J,K), HY(I,J+I,K), HZ(I,J,K+I)

as magnetic material using the IDFOR, IDFIV, and IDSIX arrays.

This example indicates the following correspondence between
BUILDing dielectric and magnetic objects:

Dielectric Magnetic
Object Object

IDONE(I, J,K) = IDFOR(I+I, J, K)
IDTWO(I, J, K) = IDFIV(I, J+l, K)
IDTHRE(I,J,K) = IDSIX(I,J,K+I)

To illustrate this for a somewhat more complicated case, consider
an example of a 3x3 cell dielectric plate located in the XY plane
at K=5. The plate can be generated with the following FORTRAN
lines:

PLATE
7

i0
20

DO 20 J=4,7
DO I0 I=4,7

IF(I.NE.7) IDONE(I, J,K) =2
IF (J.NE. 7) IDTWO(I, J, K)=2

CONTINUE
CONTINUE

J
A

4 5

.......... >I
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If the same FORTRANlines were used to try to generate a magnetic
plate, the object generated would actually be unconnected:

•

PLATE

i0

20

DO 20 J=4,7

DO I0 I=4,7

IF (I.NE. 7) IDFOR(I,J,K) =ii

IF (J.NE. 7) IDFIV(I, J,K) =ii

CONTINUE

CONTINUE

I
I

6 __I .....

J

A 5 ii

4f----

4 5

.......... >I

7

The correct way to build the magnetic plate is with the following

FORTRAN code:

I0

2O

DO 20 J=4,7

DO i0 I=4,7

IF(I.NE.4)IDFOR(I,J,K)=II

IF(J.NE.4)IDFIV(I,J,K)=II

CONTINUE

CONTINUE

This is equivalent to the correspondence relationship given

above. See comments in the BUILD subroutine for further

explanation of the ID??? arrays.

When it is important to place the object in the center of

the problem space (to have lowest possible cross-pol scattering

for symmetric objects), NX etc. should be odd for dielectrics and

even for magnetics. This is due to the field locations in the

Yee cell and also the placement of the E and H field absorbing

boundary condition surfaces.

If the object being modeled has curved surfaces, edges, etc.

that are at an angle to one or more of the coordinate axes, then

that shape must be approximately modeled by lines and faces in a

"stair-stepped" (or stair-cased) fashion. This stair-cased

approximation introduces errors into computations at higher

frequencies. Intuitively, the error becomes smaller as more

cells are used to stair-case a particular object. Thus, the

default Nickel Ferrite sphere scattering geometry is a stair-

cased sphere.

When the user's test object is dielectric it is apparently

better to use the Mur E field boundary formulation. For a

magnetic scattering object it seems better to use the Mur H field

boundary formulation. The reason for this has to do with the
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reactive part of the energy (near zone fields) reaching the
absorbing boundary surface. These near zone fields differ for
magnetic and dielectric objects, even for dual objects where the
far fields are essentially identical.

One final comment on building dual dielectric vs magnetic
objects can be explained by considering the duality between
magnetic and dielectric materials. In testing the code, it was
helpful to test dual dielectric/magnetic objects since they
scatter identically in the far zone. In specifying the material
of a magnetic scatterer to be the dual of a dielectric, the
following transformation must be applied:

DIELECTRIC <--DUAL--> MAGNETIC

E field
H field

E

(k)
a

<........ > H field
<........ > -E field
<........ >
<........ > 6
<........ > B (k)
<........ > a. ( o16o)=a

The somewhat surprising entry in this table is the relationship

between the dielectric and magne;ic conductivities. The reason

why the magnetic conductivity, a , for magnetic materials has to

be scaled as indicated is that for duality to be applied the free

space impedance must be inverted. Although this is not generally

possible for actual problems, identical far zone scattering for

dielectric and magnetic scatterers can be achieved by this

scaling of a as above and realizing that E and H scattered _ield

to incident field ratios will not invert. This scaling of a is

why conductivity for magnetic materials is usually not a

dominating feature, and in fact is often neglected.

SUBROUTINE DCUBE

This subroutine builds cubes of dielectric material by

defining four each of IDONE, IDTWO and IDTHRE components

corresponding to one spatial cube of dielectric material. It can

also be used to define thin (i.e. up to one cell thick)

dielectric or perfectly conducting plates. Refer to comments

within DCUBE for a description of the arguments and usage of the
subroutine. This subroutine could be modified to build cubes

and/or plates of magnetic materials by using a triple do-loop in

BUILD (after calls to DCUBE) over coordinate indices I, J, K and

applying the correspondence between the IDONE-IDTHRE and IDFOR-

IDSIX arrays that was previously discussed.

SUBROUTINE SETUP *

This subroutine initializes many of the constants required

for incident field definition, field update equations, outer
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radiation boundary conditions and. material parameters. The
material parameters E, _, a and a are defined for each material
type using the material arrays EPS, XMU, SIGMA and SIGMAC
respectively. The array EPS is used for the total permittivity,
XMU is used for the total permeability, SIGMA is used for the
electric conductivity and SIGMAC is used for the magnetic
conductivity (useful for running dual problems). These arrays
are initialized in SETUP to free space material parameters for
all material types and then the user is required to modify these
arrays for his/her scattering materials. Thus, for the lossy
dielectric material type 2, the user must define EPS(2) and
SIGMA(2). The remainder of the subroutine computes constants
used in field update equations and boundary conditions and writes
the diagnostics file.

SUBROUTINEEXSFLD

This subroutine updates all x components of scattered
electric field at each time step except those on the outer
boundaries of the problem space. IF statements based upon the
IDONE array are used to determine the type of material present
and the corresponding update equation to be used. These
scattered field equations are based on the development given in
[4] .

SUBROUTINE EYSFLD

This subroutine updates all y components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDTWO array are used to determine the type of material present

and the corresponding update equation to be used.

SUBROUTINE EZSFLD

This subroutine updates all z components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDTHRE array are used to determine the type of material present

and the corresponding update equation to be used.

SUBROUTINES RADEYX, RADEZX, RADEZY, RADEXY, RADEXZ and RADEYZ

These subroutines apply the outer radiation boundary
conditions to the scattered electric field on the outer

boundaries of the problem space for non-magnetic scatterers. The

user controls selection of these routines through the parameter

MAGNET (described later).
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SUBROUTINEHXSFLD

This subroutine updates all x components of scattered
magnetic field at each time step. IF statements based upon the

IDFOR array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINEHYSFLD

This subroutine updates all y components of scattered
magnetic field at each time step. IF statements based upon the
IDFIV array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINEHZSFLD

This subroutine updates all z components of scattered
magnetic field at each time step. IF statements based upon the
IDSIX array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINESRADHXZ, RADHYX, RADHZY, RADHXY, RADHYZand RADHZX

These subroutines apply the outer radiation boundary
conditions to the scattered magnetic field on the outer
boundaries of the problem space for magnetic scatterers. The
user controls selection of these routines through the parameter
MAGNET (described later).

SUBROUTINEDATSAV *

This subroutine samples near zone scattered field quantities
and saves them to disk. This subroutine is where the quantities
to be sampled and their spatial locations are to be specified and
is only called if near zone fields only are desired or if both
near and far zone fields are desired. Total field quantities can
also be sampled. See comments within the subroutine for
specifying sampled scattered and/or total field quantities. When
sampling magnetic fields, remember the 6t/2 time difference

between E and H when writing the fields to disk. Sections of

code within this subroutine determine if the sampled quantities

and the spatial locations have been properly defined.

FUNCTIONS EXI, EYI, EZI, HXI, HYI and HZI

These functions are called to compute the x, y and z

components of incident electric and magnetic field, respectively.

The functional form of the incident field is contained in a

separate function SOURCE.
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FUNCTION SOURCE*

This function contains the functional form of the incident
field. The code as furnished uses the Gaussian form of the
incident field. An incident smooth cosine pulse is also
available by uncommenting the required lines and commenting out
the Gaussian pulse. Thus, this function need only be modified if
the user changes the incident pulse from Gaussian to smooth
cosine. A slight improvement in computing speed and
vectorization may be achieved by moving this function inside each
of the incident field functions EXI, EYI and so on.

FUNCTIONS DEXI, DEYI, DEZI, DHXI, DHYI and DHZI

These functions are called to compute the x, y and z
components of the time derivative of incident electric and
magnetic field, respectively. The functional form of the
incident field is contained in a separate function DSRCE.

FUNCTION DSRCE *

This function contains the functional form of the time
derivative of the incident field. The code as furnished uses the
time derivative of the Gaussian form of the incident field. A
smooth cosine pulse time derivative is also available by
uncommenting the required lines and commenting out the Gaussian
pulse. Thus, the function need only be modified if the user
changes from the Gaussian to smooth cosine pulse. Again, a
slight improvement in computing speed and vectorization may be
achieved by moving this function inside each of the time
derivative incident field functions DEXI, DEYI and so on.

SUBROUTINEZERO

This subroutine initializes various arrays and variables to
zero.

VIII. INCLUDE FILE DESCRIPTION (COMMONC.FOR) *

The include file, COMMONC.FOR, contains all of the arrays

and variables that are shared among the different subroutines.

This file will require the most modifications when defining

scattering problems. A description of the parameters that are

normally modified follows.

The parameters NX, NY and NZ specify the size of the problem

space in cells in the x, y and z directions respectively. For

problems where it is crucial to center the object within the

problem space, then NX, NY and NZ should be odd for dielectric

scatterers and even for magnetic scatterers. The parameter NTEST

defines the number of near zone quantities to be sampled and NZFZ

defines the field output format. Set NZFZ=0 for near zone fields
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only, NZFZ=I for far zone fields only and NZFZ=2 for both near
and far zone fields. Parameter MAGNETis used to define magnetic
scatterers and it controls the choice of RADE?? versus RADH??
absorbing boundary subroutines. It is set to 0 for dielectric
scatterers and to 1 for magnetic scatterers. Parameter NSTOP
defines the maximum number of time steps. DELX, DELY, and DELZ
(in meters) define the cell size in the x, y and z directions
respectively. The @ and _ incidence angles (in degrees) are
defined by THINC and PHINC respectively and the polarization is
defined by ETHINC and EPHINC. ETHINC=I.0, EPHINC=0.0 for @-
polarized incident field and ETHINC=0.0, EPHINC=I.0 for _-
polarized incident fields. _arameters AMP and BETA define the
maximum amplitude and the e° temporal width of the incident
pulse respectively. BETA automatically adjusts when the cell
size is changed and normally should not be changed by the user.
The far zone scattering angles are defined by THETFZ and PHIFZ.
The code as furnished performs backscatter computations, but
these parameters could be modified for a bistatic computation.

IX. RCS COMPUTATIONS

A companion code, RCS3D.FOR, has been included to compute

RCS versus frequency. It uses the file name of the FDTD far zone

output data (FZOUT3D.DAT) and writes data files of far zone

electric fields versus time (FZTIME.DAT) and RCS versus frequency

(3DRCS.DAT). The RCS computations are performed up to the i0

cell/_ 0 frequency limit. Refer to comments within this code for
further details.

X. RESULTS

As previously mentioned, the code as furnished models a 20

cm radius, lossy magnetic sphere and computes backscatter far

zone scattered fields at angles of 8=22.5 and _=22.5 degrees.

Results are included for the dual dielectric sphere and the

default magnetic sphere. The material parameters for the

dielectric dual of the magnetic material are _=4E0, a=0.2 and

_=_0" For these materials there are 5 cells per wavelength at

approximately 3.0 GHz.

Figures 2-3 show the co-polarized far zone scattered field

versus time and the co-polarized RCS versus frequency for the

dielectric sphere.

Figures 4-5 show the co-polarized far zone electric field

versus time and the co-polarized RCS for the magnetic sphere.

XI. SAMPLE PROBLEM SETUP

The code as furnished models a 20 cm radius, lossy magnetic

sphere and computes backscatter far zone scattered fields at

angles of @=22.5 and _=22.5 degrees. The corresponding output
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data files are also provided, along with a code to compute Radar
Cross Section using these data files. In order to change the
code to a new problem, many different parameters need to be
modified. A sample problem setup will now be discussed.

Suppose that the problem to be studied is RCS backscatter
versus frequency from a 28 cm by 31 cm perfectly conducting plate
with a 3 cm dielectric coating with a dielectric constant of 4E0

using a 8-polarized field. The backscatter angles are 8=30.0 and

_=60.0 degrees and the frequency range is up to 3 Ghz.

Since the frequency range is up to 3 Ghz, the cell size must

be chosen appropriately to resolve the field IN ANY MATERIAL at

the highest frequency of interest. A general rule is that the

cell size should be i/i0 of the wavelength at the highest

frequency of interest. For difficult geometries, 1/20 of a

wavelength may be necessary. The free space wavelength at 3 GHz

is 10=10 cm and the wavelength in the dielectric coating at 3 GHz

is 5 cm. The cell size is chosen as 1 cm, which provides a

resolution of 5 cells/l in the dielectric coating and i0 cells/l 0

in free space. Numerical studies have shown that choosing the

cell size S 1/4 of the shortest wavelength in any material is

the practical lower limit. Thus the cell size of 1 cm is barely

adequate. The cell size in the x, y and z directions is set in

the common file through variables DELX, DELY and DELZ. Next the

problem space size must be large enough to accomodate the

scattering object, plus at least a five cell boundary (i0 cells

is more appropriate) on every side of the object to allow for the

far zone field integration surface. It is advisable for plate

scattering to have the plate centered in the x and y directions

of the problem space in order to reduce the cross-polarized

backscatter and to position the plate low in the z direction to

allow strong specular reflections multiple encounters with the

ORBC. A i0 cell border is chosen, and the problem space size is

chosen as 49 by 52 by 49 cells in the x, y and z directions

respectively. As an initial estimate, allow 2048 time steps so

that energy trapped within the dielectric layer will radiate.

Thus parameters NX, NY and NZ in COMMONC.FOR would be changed to

reflect the new problem space size, and parameter NSTOP is

changed to 2048. If all transients have not been dissipated

after 2048 time steps, then NSTOP will have to be increased.

Truncating the time record before all transients have dissipated

will corrupt frequency domain results. Parameter NZFZ must be

equal to 1 since we are interested in far zone fields only.

Parameter MAGNET must be equal to 0 for the dielectric scatterer.

To build the object, the following lines are inserted into the

BUILD subroutine:

C

C BUILD THE DIELECTRIC SLAB FIRST

C

ISTART=II
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C
C
C

JSTART=II
KSTART=II
NXWIDE=28
NYWIDE=31
NZWIDE=3
MTYPE=2
CALL DCUBE(ISTART,JSTART,KSTART,NXWIDE,NYWIDE,NZWIDE,I_rYPE)

BUILD PEC PLATE NEXT

ISTART=II

JSTART=II

KSTART=II

NXWIDE=28

NYWIDE=31

NZWIDE=0

MTYPE=I

CALL DCUBE(ISTART,JST/_T,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)

The PEC plate is built last on the bottom of the dielectric

slab to avoid any air gaps between the dielectric material and

the PEC plate. In the common file, the incidence angles THINC

and PHINC have to be changed to 30.0 and 60.0 respectively, the

cell sizes (DELX, DELY, DELZ) are set to 0.01, and the

polarization is set to ETHINC=I.0 and EPHINC=0.0 for 8-polarized

fields. Since dielectric material 2 is being used for the

dielectric coating, the constitutive parameters EPS(2) and

SIGMA(2) are set to 4_ 0 and 0.0 respectively, in subroutine

SETUP. This completes the code modifications for the sample

problem.

XII. NEW PROBLEM CHECKLIST

This checklist provides a quick reference to determine if

all parameters have been defined properly for a given scattering

problem. A reminder when defining quantities within the code:

use MKS units and specify all angles in degrees.

COMMONC.FOR:

i) Is the problem space sized correctly? (NX, NY, NZ)

2) For near zone fields, is the number of sample points correct?

(NTEST)

3) Is parameter NZFZ defined correctly for desired field

outputs?

4) Is parameter MAGNET defined correctly for the type of

scatterer?

5) Is the number of time steps correct? (NSTOP)
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6) Are the cell dimensions (DELX, DELY, DELZ) defined correctly?

7) Are the incidence angles (THINC, PHINC) defined correctly?

8) Is the polarization of the incident wave defined correctly
(ETHINC, EPHINC)?

9) For other than backscatter far zone field computations, are
the scattering angles set correctly? (THETFZ, PHIFZ)

SUBROUTINEBUILD:

i) Is the object completely and correctly specified?

SUBROUTINESETUP:

i) Are the constitutive parameters for each material specified
correctly? (EPS, XMU, SIGMA, SIGMAC)

FUNCTIONS SOURCEand DSRCE:

i) If the Gaussian pulse is not desired, is it commented out and
the smooth cosine pulse uncommented?

SUBROUTINEDATSAV:

i) For near zone fields, are the sampled field types and spatial
locations correct for each sampling point? (NTYPE, IOBS, JOBS,
MOBS)
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FIGURE TITLES

Standard three dimensional Yee cell showing placement

of electric and magnetic fields.

Co-polarized far zone scattered field versus time for

dielectric sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

dielectric sphere with 20 cm radius.

Co-polarized far zone scattered field versus time for

magnetic sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

magnetic sphere with 20 cm radius.
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I. INTRODUCTION

The Penn State Finite Difference Time Domain Electromagnetic

Scattering Code Version D is a three dimensional numerical

electromagnetic scattering code based upon the Finite Difference

Time Domain Technique (FDTD). The supplied version of the code

is one version of our current three dimensional FDTD code set.

This manual provides a description of the code and corresponding

results for several scattering problems. The manual is organized

into fourteen sections: introduction, description of the FDTD

method, operation, resource requirements, Version D code

capabilities, a brief description of the default scattering

geometry, a brief description of each subroutine, a description

of the include file (COMMOND.FOR), a section briefly discussing

Radar Cross Section (RCS) computations, a section discussing some

scattering results, a sample problem setup section, a new problem

checklist, references and figure titles.

II. FDTD METHOD

The Finite Difference Time Domain (FDTD) technique models

transient electromagnetic scattering and interactions with

objects of arbitrary shape and/or material composition. The

technique was first proposed by Yee [i] for isotropic, non-

dispersive materials in 1966; and has matured within the past

twenty years into a robust and efficient computational method.

The present FDTD technique is capabable of transient

electromagnetic interactions with objects of arbitrary and

complicated geometrical shape and material composition over a

large band of frequencies. This technique has recently been

extended to include dispersive dielectric materials, chiral

materials and plasmas.

In the FDTD method, Maxwell's curl equations are discretized

in time and space and all derivatives (temporal and spatial) are

approximated by central differences. The electric and magnetic

fields are interleaved in space and time and are updated in a

second-order accurate leapfrog scheme. The computational space

is divided into cells with the electric fields located on the

edges and the magnetic fields on the faces (see Figure i). FDTD

objects are defined by specifying dielectric and/or magnetic

material parameters at electric and/or magnetic field locations.

Two basic implementations of the FDTD method are widely used

for electromagnetic analysis: total field formalism and scattered
field formalism. In the total field formalism, the electric and

magnetic field are updated based upon the material type present

at each spatial location. In the scattered field formalism, the

incident waveform is defined analytically and the scattered field

is coupled to the incident field through the different material

types. For the incident field, any waveform, angle of incidence

and polarization is possible. The separation of the incident and



scattered fields conveniently allows an absorbing boundary to be
employed at the extremities of the discretized problem space to
absorb the scattered fields.

This code is a scattered field code, and the total E and H
fields may be found by combining the incident and scattered
fields. Any type of field quantity (incident, scattered, or
total), Poynting vector or current are available anywhere within

the computational space. These fields, incident, scattered and

total, may be found within, on or about the interaction object

placed in the problem space. By using a near to far field

transformation, far fields can be determined from the near fields

within the problem space thereby affording radiation patterns and

RCS values. The accuracy of these calculations is typically

within a dB of analytic solutions for dielectric and magnetic

sphere scattering. Further improvements are expected as better

absorbing boundary conditions are developed and incorporated.

III. OPERATION

Typically, a truncated Gaussian incident waveform is used to

excite the system being modeled, however certain code versions

also provide a smooth cosine waveform for convenience in modeling

dispersive materials. The interaction object is defined in the

discretized problem space with arrays at each cell location

created by the discretization. All three dielectric material

types for E field components within a cell can be individually

specified by the arrays IDONE(I,J,K), IDTWO(I,J,K),

IDTHRE(I,J,K). This models arbitrary dielectric materials with

= _0" By an obvious extension to six arrays, magnetic materials

with _ _ _0 can be modeled.

Scattering occurs when the incident wave, marched forward in

time in small steps set by the Courant stability condition,

reaches the interaction object. Here a scattered wave must

appear along with the incident wave so that the Maxwell equations

are satisfied. If the material is a perfectly conductive metal

then only the well known boundary condition

scat inc

Etan = -Etan (i)

must be satisfied. For a nondispersive dielectric the

requirement is that the total field must satisfy the Maxwell

equations in the material:

VxE t°r = Vx(E inc+E scar) =
1 aH t°t 1 a(H isc+H scat)

_o at /1o at

(2)



VxHt°t=_Tx (H inc+H scat) =¢--
aEtOt

+oE t°t

8t
(3)

:_ 8(E inc+E scat) +o(E inc+E scat)

at

(4)

Additionally the incident wave, defined as moving unimpeded

through a vacuum in the problem space, satisfies everywhere in

the problem the Maxwell equations for free space

(5)

@E inc

VxHinc =¢° at
(6)

Subtracting the second set of equations from the first yields the

Maxwell equations governing the scattered fields in the material:

1 aH scat
_7x E scat: (7 )

_o 8t

VxHscat= (¢-e: o) --

aE inc . 8E scat
+oE Inc+¢ -- +O.E scat

@t @t

(8)

Outside the material this simplifies to:

1 @H scat
Vx Escat= (9)

Po @t

a E scat
VxH scat :e (10)

o 8t

Magnetic materials, dispersive effects, non-linearities,

etc., are further generalizations of the above approach. Based

on the value of the material type, the subroutines for

calculating scattered E and H field components branch to the

appropriate expression for that scattered field component and
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that component is advanced in time according to the selected
algorithm. As many materials can be modeled as desired, the
number equals the dimension selected for the flags. If materials
with behavior different from those described above must be
modeled, then after the appropriate algorithm is found, the
code's branching structure allows easy incorporation of the new
behavior.

IV. RESOURCE REQUIREMENTS

The number of cells the problem space is divided into times

the six components per cell set the problem space storage

requirements

Storage=NC x 6 components/cell x 4 bytes/component (11)

and the computational cost

Operations=NC x 6 comp/cell × i0 ops/component x N (12)

where N is the number of time steps desired.

N typically is on the order of ten times the number of cells

on one side of the problem space. More precisely for cubical

cells it takes _ time steps to traverse a single cell when the

time step is set by the Courant stability condition

Ax
&t- _x = cell size dimension (13)

The condition on N is then that

I I

N _ 10x (_NC _) NC _ ~
number cells on a side

of the problem space

(14)

The earliest aircraft modeling using FDTD with approximately 30

cells on a side required approximately 500 time steps. For more

recent modeling with approximately i00 cells on a side, 2000 or

more time steps are used.

For (i00 cell) _ problem spaces, 24 MBytes of memory are

required to store the fields. Problems on the order of this size

have been run on a Silicon Graphics 4D 220 with 32 MBytes of

memory, IBM RISC 6000, an Intel 486 based machine, and VAX

11/785. Storage is only a problem as in the case of the 486

where only 16 MBytes of memory was available. 3This limited the

problem space size to approximately (80 cells) .
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For (i00 cell) 3 problem_ with approximately 2000 time steps,
there is a total of 120 x i_ operations to perform. The speeds
of the previously mentioned machines are 24 MFLOPs (4 processor
upgraded version), i0 MFL_PS, 1.5 MFLOPS, ._nd 0.2 MFLOPs. [0_erun times are then 5 x i0 seconds, 12 x i0 seconds, 80 x 1
seconds and 600 x 103 seconds, respectively. In hours the times
are 1.4, 3.3, 22.2 and 167 hours. Problems of this size are
possible on all but the last machine and can in fact be performed
on a personal computer (486) if one day turnarounds are
permissible.

V. VERSION D CODE CAPABILITIES

The Penn State University FDTD Electromagnetic Scattering

Code Version D has the following capabilities:

i) Ability to model lossy dielectric and perfectly conducting
scatterers.

2) Ability to model lossy magnetic scatterers.

3) Ability to model dispersive dielectric and dispersive

magnetic scatterers. This dispersive FDTD method is now
designated (FD)-TD for Frequency-Dependent Finite Difference Time

Domain.

4) First and second order outer radiation boundary condition

(ORBC) operating on the electric fields for dielectric and

dispersive dielectric scatterers.

5) First and second order ORBC operating on the magnetic fields

for magnetic and dispersive magnetic scatterers.

6) Near to far zone transformation capability to obtain far zone

scattered fields.

7) Gaussian and smooth cosine incident waveforms with arbitrary

incidence angles.

8) Near zone field, current or power sampling capability.

9) Companion code for computing Radar Cross Section (RCS).

VI. DEFAULT SCATTERING GEOMETRY

The code as delivered is set up to calculate the far zone

backscatter fields for a 6.67 meter radius, dispersive, Nickel

Ferrite sphere. Nickel Ferrite is defined by a frequency

dependent permeability given by

where _® is the infinite frequency permeability, _s is the zero



p (co) Ps - P®
-- /'/'co -I-

/_o 1 + J(°'ro

(15)

frequency permeability, TO is the relaxation time and _ is the

radian frequency. The Nickel Ferrite parameters are _=I, _s=100

and T0=20 ns. The problem space size is 66 by 66 by 66 cells in

the x, y and z directions, the cells are 1/3 m cubes, and the

incident waveform is a _-polarized smooth cosine pulse with

incidence angles of 8=22.5 and _=22.5 degrees. The output data

files are included as a reference along with a code (RCS3D.FOR)

for computing the frequency domain RCS using these output data

files. The ORBC is the second order absorbing boundary condition

set forth by Mur [2].

VII. SUBROUTINE DESCRIPTION

In the description for each subroutine, an asterisk (*) will

be placed by the subroutine name if that particular subroutine is

normally modified when defining a scattering problem.

MAIN ROUTINE

The main routine in the program contains the calls for all

necessary subroutines to initialize the problem space and

scattering object(s) and for the incident waveform, far zone

transformation, field update subroutines, outer radiation

boundary conditions and field sampling.

The main routine begins with the include statement and then

appropriate data files are opened, and subroutines ZERO, BUILD

and SETUP are called to initialize variables and/or arrays, build

the object(s) and initialize the incident waveform and

miscellaneous parameters, respectively. Subroutine SETFZ is

called to intialize parameters for the near to far zone

transformation if far zone fields are desired.

The main loop is entered next, where all of the primary

field computations and data saving takes place. During each time

step cycle, the EXSFLD, EYSFLD, and EZSFLD subroutines are called

to update the x, y, and z components of the scattered electric

field. The six electric field outer radiation boundary

conditions _RADE??) are called next to absorb any outgoing

scattered fields for perfectly conducting, dielectric, or

dispersive dielectric scatterers. Time is then advanced 1/2 time

step according to the Yee algorithm and then the HXSFLD, HYSFLD,

AND HZSFLD subroutines are called to update the x, y, and z

components of scattered magnetic field. The six magnetic field
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outer radiation boundary conditions (RADH??) are called next to
absorb any outgoing scattered fields for magnetic or dispersive
magnetic scatterers. Time is then advanced another 1/2 step and
then either near zone fields are sampled and written to disk in
DATSAV, and/or the near zone to far zone vector potentials are
updated in SAVFZ. The parameter NZFZ (described later) in the
common file defines the type of output fields desired.

After execution of all time steps in the main field update
loop, subroutine FAROUT is called if far zone fields are desired
to compute the far zone fields and write them to disk. At this
point, the execution is complete.

SUBROUTINESETFZ

This subroutine initializes the necessary parameters
required for far zone field computations. The code as furnished
computes backscatter far zone fields and can compute bistatic far
zone fields for one scattering angle (i.e. one 8 and _ angle).
Refer to reference [3] for a complete description of the near to
far zone transformation. Other versions of this subroutine
provide for multiple bistatic angles.

SUBROUTINESAVFZ

This subroutine updates the near zone to far zone vector
potentials.

SUBROUTINEFAROUT

This subroutine changes the near zone to far zone vector
potentials to far zone electric field 8 and _ components and
writes them to disk.

SUBROUTINEBUILD *

This subroutine "builds" the scattering object(s) by
initializing the IDONE, IDTWO, IDTHRE, IDFOR, IDFIV and IDSIX
arrays. The IDONE-IDTHRE arrays are for specifying perfectly
conducting, lossy dielectrics and dispersive dielectric
materials. The IDFOR-IDSIX arrays are for lossy magnetic and
dispersive magnetic materials. The reason for the separate
arrays is so the user can independently control the exact
placement of dielectric and magnetic material in the Yee cells.
Refer to Figure 1 for a diagram of the basic Yee cell. For
example, setting an element of the IDONE array at some I,J,K
location is actually locating dielectric material at a cell edge
whose center location is I+0.5,J,K. Setting an element of the
IDFOR array at some I,J,K location is actually locating magnetic
material perpendicular to a cell face whose center location is
I,J+O.5,K+0.5, or equivalently, locating magnetic material at an
edge on the dual H field mesh. The difference between the IDONE
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and IDFOR array locations is a direct result of the field offsets
in the Yee cell (see Figure i). Thus, materials with diagonal
permittivity and/or diagonal permeability tensors can be modeled.
The default material type for all ID??? arrays is 0, or free
space. By initializing these arrays to values other than 0, the
user is defining an object by determining what material types are
present at each spatial location. Other material types available
for IDONE-IDTHRE are 1 for perfectly conducting objects, 2-9 for
lossy non-magnetic dielectrics, 20-29 for dispersive dielectrics.
IDONE-IDTHRE are normally set to 0 for magnetic scatterers. Other
material types available for IDFOR-IDSIX are 10-19 for lossy
magnetic materials and 30-39 for dispersive magnetic materials.
IDFOR-IDSIX are normally set to 0 for perfectly conducting or
dielectric scatterers. If the user wants a material with both
dielectric and magnetic properties (i.e. permittivity other than
E0 for magnetic materials, and permeability other than _0 for
dielectric materials), then he/she must define IDONE-IDSIX for
that particular material. This subroutine also has a section
that checks the ID??? arrays to determine if legal material types
have been defined throughout the problem space_ The actual non-
dispersive material parameters (_, _, a, and a ) are defined in
subroutine SETUP. The dispersive material parameters (_s, _®,

r0, a, _s, _®, To, and a ) are also defined in a separate section
in SETUP. The default geometry is a 6.67 m radius, dispersive,
Nickel Ferrite sphere.

The user must be careful that his/her object created in the
BUILD subroutine is properly formed. There is not a direct
one-to-one correspondence between the dielectric and magnetic
ID??? arrays. However, one can define a correspondence, so that
code used to generate a dielectric object can be modified to
generate a magnetic object.

To see this consider that we have set the permittivity at
cell locations corresponding to

EX(I,J,K), EY(I,J,K), EZ(I,J,K)

using the IDONE, IDTWO, and IDTHRE arrays respectively. This
determines one corner of a dielectric cube. If we wish to define
the corner of a corresponding magnetic cube, offset 1/2 cell in
the x, y, z directions, we would set the locations of the
magnetic fields

HX(I+I,J,K), HY(I,J+I,K), HZ(I,J,K+I)

as magnetic material using the IDFOR, IDFIV, and IDSIX arrays.

This example indicates the following correspondence between

BUILDing dielectric and magnetic objects:
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Dielectric Magnetic
Object Object

IDONE(I,J,K) = IDFOR(I+I,J,K)
IDTWO(I,J,K) = IDFIV(I,J+I,K)
IDTHRE(I,J,K) = IDSIX(I,J,K+I)

To illustrate this for a somewhat more complicated case, consider
an example of a 3x3 cell dielectric plate located in the XY plane
at K=5. The plate can be generated with the following FORTRAN
lines:

PLATE

i0
20

DO 20 J=4,7
DO I0 I=4,7

IF (I.NE. 7) IDONE(I, J,K) =2
IF (J.NE. 7) IDTWO(I, J,K) =2

CONTINUE

CONTINUE

J
A 5

4 5 6 7

........... >I

If the same FORTRAN lines were used to try to generate a magnetic

plate, the object generated would actually be unconnected:

,

PLATE

I0

20

DO 20 J=4,7

DO i0 I=4,7

IF (I.NE. 7) IDFOR (I, J,K)=ii

IF (J.NE. 7) IDFIV (I, J,K)=Ii

CONTINUE

CONTINUE

J
A

_

5 ----

4t----

4 5

.......... >I

6 7

The correct way to build the magnetic plate is with the following

FORTRAN code:

DO 20 J=4,7

DO i0 I=4,7

IF(I.NE.4)IDFOR(I,J,K)=II

IF(J.NE.4)IDFIV(I,J,K)=II

i0 CONTINUE

20 CONTINUE
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This is equivalent to the correspondence relationship given
above. See comments in the BUILD subroutine for further
explanation of the ID??? arrays.

When it is important to place the object in the center of
the problem space (to have lowest possible cross-pol scattering
for symmetric objects), NX etc. should be odd for dielectrics and
even for magnetics. This is due to the field locations in the
Yee cell and also the placement of the E and H field absorbing
boundary condition surfaces.

If the object being modeled has curved surfaces, edges, etc.
that are at an angle to one or more of the coordinate axes, then
that shape must be approximately modeled by lines and faces in a
"stair-stepped" (or stair-cased) fashion. This stair-cased
approximation introduces errors into computations at higher
frequencies. Intuitively, the error becomes smaller as more
cells are used to stair-case a particular object. Thus, the
default Nickel Ferrite sphere scattering geometry is a stair-
cased sphere.

When the user's test object is dielectric it is apparently
better to use the Mur E field boundary formulation. For a
magnetic scattering object it seems better to use the Mur H field
boundary formulation. The reason for this has to do with the
reactive part of the energy (near zone fields) reaching the
absorbing boundary surface. These near zone fields differ for
magnetic and dielectric objects, even for dual objects where the

far fields are essentially identical.

One final comment on building dual dielectric vs magnetic

objects can be explained by considering the duality between

magnetic and dielectric materials. In testing the code, it was

helpful to test dual dielectric/magnetic objects since they

scatter identically in the far zone. In specifying the material

of a magnetic scatterer to be the dual of a dielectric, the

following transformation must be applied:

DIELECTRIC <--DUAL--> MAGNETIC

E field < ---> H field

H field < ........ > -E field

< ........ >

< ........ >

S (k) < ........ > _ (k)

a <........ > _. (_oIEo)=a

The somewhat surprising entry in this table is the relationship

between the dielectric and magnetic conductivities. The reason

why the magnetic conductivity, a , for magnetic materials has to

be scaled as indicated is that for duality to be applied the free
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space impedance must be inverted. Although this is not generally
possible for actual problems, identical far zone scattering for
dielectric apd magnetic scatterers can be achieved by this
scaling of a as above and realizing that E and H scattered _ield
to incident field ratios will not invert. This scaling of a is
why conductivity for magnetic materials is usually not a
dominating feature, and in fact is often neglected.

SUBROUTINEDCUBE

This subroutine builds cubes of dielectric material by
defining four each of IDONE, IDTWO and IDTHRE components
corresponding to one spatial cube of dielectric material. It can
also be used to define thin (i.e. up to one cell thick)
dielectric or perfectly conducting plates. Refer to comments
within DCUBE for a description of the arguments and usage of the
subroutine. This subroutine could be modified to build cubes
and/or plates of magnetic materials by using a triple do-loop in
BUILD (after calls to DCUBE) over coordinate indices I, J, K and
applying the correspondence between the IDONE-IDTHRE and IDFOR-
IDSIX arrays that was previously discussed.

SUBROUTINE SETUP *

This subroutine initializes many of the constants required
for incident field definition, field update equations, outer
radiation boundary conditions and, material parameters. The
material parameters _, _, a and a are defined for each material
type (non-dispersive) using the material arrays EPS, XMU, SIGMA
and SIGMAC respectively. The array EPS is used for the total
permittivity, XMU is used for the total permeability, SIGMA is
used for the electric conductivity and SIGMAC is used for the
magnetic conductivity (useful for running dual problems). These
arrays are initialized in SETUP to free space material parameters
for all material types and then the user is required to modify
these arrays for his/her scattering materials. Thus, for the
lossy dielectric material type 2, the user must define EPS(2) and
SIGMA(2) .

For dispersive dielectric and magnetic materials, different
material parameter arrays are used. The functional form of the
frequency dependent permittivity/permeability that was
implemented in the code is the Debye relaxation [4] with an
effective DC conductivity given by

a
E(_) = _/-jE//= 6mE0 + E0Xe(6a)+-- (16)

j_

where the frequency dependent electric susceptibility function is
defined as
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Xe(_ ) _ e_ - e.
1 + j_z 0 (17)

where _® is the infinite frequency permittivity, _s is the zero

frequency permittivity, T o is the relaxation time, _ is the

effective electric conductivity, and _ is the radian frequency.

The same expressions were used for the frequency dependent

permeability and can be written from equations (16) and (17) by

replacing _ by _ and a by a . The corresponding time domain

susceptibility function is given by

(,1,o)u(t)_e (t) = e

T o

(18)

The FDTD implementation of frequency dependent permittivity

and/or permeability involves a convolution with the electric

and/or magnetic field and interested readers are referred to

references [5-6] for further details.

For dispersive dielectric materials, the corresponding

material parameter arrays are EPSINF (_®), EPSSTA (_s), RELAXT

(To) , and RELSIG (a). For dispersive magnetic materials, the

arrays are XMUINF (_®), XMUSTA (_,), RELAXT (To) and RELSIG (a).

These dispersive material parameters are defined under the

DISPERSIVE SETUP portion of the subroutine. The remainder of the

subroutine computes constants used in field update equations and

boundary conditions and writes the diagnostics file.

SUBROUTINE EXSFLD

This subroutine updates all x components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDONE array are used to determine the type of material present

and the corresponding update equation to be used. These

scattered field equations are based on the development given in

[7].

SUBROUTINE EYSFLD

This subroutine updates all y components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDTWO array are used to determine the type of material present
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and the corresponding update equation to be used.

SUBROUTINEEZSFLD

This subroutine updates all z components of scattered
electric field at each time step except those on the outer
boundaries of the problem space. IF statements based upon the
IDTHRE array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINESRADEYX, RADEZX, RADEZY, RADEXY, RADEXZ and RADEYZ

These subroutines apply the outer radiation boundary
conditions to the scattered electric field on the outer
boundaries of the problem space for non-magnetic scatterers. The
user controls selection of these routines through the parameter
MAGNET(described later).

SUBROUTINEHXSFLD

This subroutine updates all x components of scattered
magnetic field at each time step. IF statements based upon the
IDFOR array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINEHYSFLD

This subroutine updates all y components of scattered
magnetic field at each time step. IF statements based upon the
IDFIV array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINEHZSFLD

This subroutine updates all z components of scattered
magnetic field at each time step. IF statements based upon the
IDSIX array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINESRADHXZ, RADHYX, RADHZY, RADHXY, RADHYZand RADHZX

These subroutines apply the outer radiation boundary
conditions to the scattered magnetic field on the outer
boundaries of the problem space for magnetic scatterers. The
user controls selection of these routines through the parameter
MAGNET(described later).

SUBROUTINEDATSAV *
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This subroutine samples near zone scattered field quantities
and saves them to disk. This subroutine is where the quantities
to be sampled and their spatial locations are to be specified and
is only called if near zone fields only are desired or if both
near and far zone fields are desired. Total field quantities can
also be sampled. See comments within the subroutine for
specifying sampled scattered and/or total field quantities. When
sampling magnetic fields, remember the 6t/2 time difference

between E and H when writing the fields to disk. Sections of

code within this subroutine determine if the sampled quantities

and the spatial locations have been properly defined.

FUNCTIONS EXI, EYI, EZI, HXI, HYI and HZI

These functions are called to compute the x, y and z

components of incident electric and magnetic field, respectively.

The functional form of the incident field is contained in a

separate function SOURCE.

FUNCTION SOURCE *

This function contains the functional form of the incident

field. The code as furnished uses the smooth cosine form of the

incident field. An incident Gaussian pulse is also available by

uncommenting the required lines and commenting out the smooth

cosine pulse. Thus, this function need only be modified if the

user changes the incident pulse from smooth cosine to Gaussian.

Currently, onlv the smooth cosine pulse can be used for

scattering from dispersive targets. A slight improvement in

computing speed and vectorization may be achieved by moving this

function inside each of the incident field functions EXI, EYI and

so on.

FUNCTIONS DEXI, DEYI, DEZI, DHXI, DHYI and DHZI

These functions are called to compute the x, y and z

components of the time derivative of incident electric and

magnetic field, respectively. The functional form of the

incident field is contained in a separate function DSRCE.

FUNCTIONS DEXIXE, DEYIXE, DEZIXE, DHXIXE, DHYIXE and DHZIXE

These functions compute the x, y and z components of the
convolution of the time derivative of the incident field with the

electric or magnetic Debye susceptibility function X-

FUNCTION DSRCE *
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This function contains the functional form of the time
derivative of the incident field. The code as furnished uses the
time derivative of the smooth cosine form of the incident field.
A Gaussian pulse time derivative is also available by
uncommenting the required lines and commenting out the smooth
cosine pulse. Thus, the function need only be modified if the
user changes from the smooth cosine to Gaussian pulse. Again, a
slight improvement in computing speed and vectorization may be
achieved by moving this function inside each of the time
derivative incident field functions DEXI, DEYI and so on.

FUNCTION DCONV

This function evaluates the convolution of the time
derivative of the incident field with the Debye susceptibility
function X.

SUBROUTINEZERO

This subroutine initializes various arrays and variables to
zero.

VIII. INCLUDE FILE DESCRIPTION (COMMOND.FOR) *

The include file, COMMOND.FOR, contains all of the arrays

and variables that are shared among the different subroutines.

This file will require the most modifications when defining

scattering problems. A description of the parameters that are

normally modified follows.

The parameters NX, NY and NZ specify the size of the problem

space in cells in the x, y and z directions respectively. For

problems where it is crucial to center the object within the

problem space, then NX, NY and NZ should be odd for dielectric

scatterers and even for magnetic scatterers. The parameter NTEST

defines the number of near zone quantities to be sampled and NZFZ

defines the field output format. Set NZFZ=O for near zone fields

only, NZFZ=I for far zone fields only and NZFZ=2 for both near

and far zone fields. Parameter MAGNET is used to define magnetic
scatterers and it controls the choice of RADE?? versus RADH??

absorbing boundary subroutines. It is set to 0 for dielectric

scatterers and to 1 for magnetic scatterers. Parameter NUMMAT

defines the total number of material types that are available for

use. NEDISP and NHDISP define the number of dispersive

dielectric and magnetic materials that are being used. Parameter

NSTOP defines the maximum number of time steps. DELX, DELY, and

DELZ (in meters) define the cell size in the x, y and z

directions respectively. The 8 and _ incidence angles (in

degrees) are defined by THINC and PHINC respectively and the

polarization is defined by ETHINC and EPHINC. ETHINC=I.0,

EPHINC=0.0 for 8-polarized incident field and ETHINC=O.0,



19

EPHINC=I.0 for _-polarized incident fields. 2 Parameters AMP and
BETA define the maximum amplitude and the e temporal width of
the incident pulse respectively. BETA automatically adjusts when
the cell size is changed and normally should not be changed by
the user. The far zone scattering angles are defined by THETFZ
and PHIFZ. The code as furnished performs backscatter
computations, but these parameters could be modified for a
bistatic computation.

IX. RCS COMPUTATIONS

A companion code, RCS3D.FOR, has been included to cgmpute

RCS versus frequency. It uses the file name of the (FD)-TD far

zone output data (FZOUT3D.DAT) and writes data files of far zone

electric fields versus time (FZTIME.DAT) and RCS versus frequency

(3DRCS.DAT). The RCS computations are performed up to the i0

cell/l 0 frequency limit. Refer to comments within this code for
further details.

X. RESULTS

As previously mentioned, the code as furnished models a 6.67

m radius, dispersive, Nickel Ferrite sphere and computes

backscatter far zone scattered fields at angles of 8=22.5 and

#=22.5 degrees. Results are included for 0.25 dB loaded

dielectric and magnetic foam spheres, 60 dB dielectric and

magnetic foam spheres and the Nickel Ferrite magnetic sphere.

The material parameters for 0.25 dB and 60 dB loaded foam are:

0.25 DB FOAM 60 DB FOAM

1.16 Es 41.0

1.01 E® 1.6

0.6497 ns _0 0.3450 ns

2.954E-04 S/m a 3.902E-01 S/m

The magnetic materials are duals of the above as described

earlier with the relative conductivity scaled by the ratio _0/E0.

The Nickel Ferrite parameters are _.=i, _s=100, _0=20 ns and

a*=0.0. For the 0.25 dB foams there are i0 cells per wavelength

at approximately 3.0 GHz. For the 60 dB foam there are i0 cells

per wavelength at approximately 2.35 GHz, as the 60 dB foam has a

higher dielectric constant.

Figures 2-10 show the real and imaginary parts of the 0.25

dB and 60 dB foam permeability, the real and imaginary parts of

the Nickel Ferrite permeability, and the magnetic

susceptibilities versus time for all three materials.
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Figures 11-14 show the co-polarized far zone electric field
versus time and the co-polarized RCS for the 0.25 dB and 60 dB
dielectric foam spheres respectively.

Figures 15-18 show the co-polarized far zone electric field
versus time and the co-polarized RCS for the 0.25 dB and 60 dB
mangetic foam spheres respectively.

Figures 19-20 show the co-polarized far zone electric field
versus time and the co-polarized RCS for the default Nickel
Ferrite sphere using the dispersive FDTD method and the non-
dispersive FDTD method. For the non-dispersive method, an
equivalent permeability and magnetic conductivity were defined at
30 MHz from (16) with _ replacing E as

_r = /J'/J (_=2,30E6) ' G" = b)/J,//ll/,o J ((_=2T30E6)

XI. SAMPLE PROBLEM SETUP

The code as furnished models a 6.67 m radius Nickel Ferrite

dispersive magnetic sphere and computes backscatter far zone

scattered fields at angles of 8=22.5 and _=22.5 degrees. The

corresponding output data files are also provided, along with a

code to compute Radar Cross Section using these data files. In

order to change the code to a new problem, many different

parameters need to be modified. A sample problem setup will now

be discussed.

Suppose that the problem to be studied is RCS backscatter

versus frequency from a 28 cm by 31 cm perfectly conducting plate

with a 3 cm dielectric coating with a dielectric constant of 4E 0

using a 8-polarized field. The backscatter angles are 8=30.0 and

_=60.0 degrees and the frequency range is up to 3 Ghz.

Since the frequency range is up to 3 Ghz, the cell size must

be chosen appropriately to resolve the field IN ANY MATERIAL at

the highest frequency of interest. A general rule is that the

cell size should be I/I0 of the wavelength at the highest

frequency of interest. For difficult geometries, 1/20 of a

wavelength may be necessary. The free space wavelength at 3 GHz

is 10=10 cm and the wavelength in the dielectric coating at 3 GHz
is 5 cm. The cell size is chosen as 1 cm, which provides a

resolution of 5 cells/l in the dielectric coating and I0 cells/l 0

in free space. Numerical studies have shown that choosing the

cell size S 1/4 of the shortest wavelength in any material is

the practical lower limit. Thus the cell size of 1 cm is barely

adequate. The cell size in the x, y and z directions is set in

the common file through variables DELX, DELY and DELZ. Next the

problem space size must be large enough to accomodate the
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scattering object, plus at least a five cell boundary (i0 cells

is more appropriate) on every side of the object to allow for the

far zone field integration surface. It is advisable for plate

scattering to have the plate centered in the x and y directions

of the problem space in order to reduce the cross-polarized

backscatter and to position the plate low in the z direction to

allow strong specular reflections multiple encounters with the

ORBC. A i0 cell border is chosen, and the problem space size is

chosen as 49 by 52 by 49 cells in the x, y and z directions

respectively. As an initial estimate, allow 2048 time steps so

that energy trapped within the dielectric layer will radiate.

Thus parameters NX, NY and NZ in COMMOND.FOR would be changed to

reflect the new problem space size, and parameter NSTOP is

changed to 2048. If all transients have not been dissipated

after 2048 time steps, then NSTOP will have to be increased.

Truncating the time record before all transients have dissipated

will corrupt frequency domain results. Parameter NZFZ must be

equal to 1 since we are interested in far zone fields only.

Parameter MAGNET must be equal to 0 for the dielectric scatterer.

To build the object, the following lines are inserted into the
BUILD subroutine:

C

C

C

C

C

C

BUILD THE DIELECTRIC SLAB FIRST

ISTART=II

JSTART=II

KSTART=II

NXWIDE=28

NYWIDE=31

NZWIDE=3

MTYPE=2

CALL DCUBE(ISTART,JSTART,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)

BUILD PEC PLATE NEXT

ISTART=II

JSTART=II

KSTART=II

NXWIDE=28

NYWIDE=31

NZWIDE=0

MTYPE=I

CALL DCUBE(ISTART,JSTART,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)

The PEC plate is built last on the bottom of the dielectric

slab to avoid any air gaps between the dielectric material and

the PEC plate. In the common file, the incidence angles THINC

and PHINC have to be changed to 30.0 and 60.0 respectively, the

cell sizes (DELX, DELY, DELZ) are set to 0.01, and the

polarization is set to ETHINC=I.0 and EPHINC=0.O for 8-polarized

fields. Since dielectric material 2 is being used for the

dielectric coating, the constitutive parameters EPS(2) and
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SIGMA(2) are set to 4_0 and 0.0 respectively, in subroutine
SETUP. This completes the code modifications for the sample
problem.

XII. NEW PROBLEM CHECKLIST

This checklist provides a quick reference to determine if

all parameters have been defined properly for a given scattering

problem. A reminder when defining quantities within the code:

use MKS units and specify all angles in degrees.

COMMOND.FOR:

i) Is the problem space sized correctly? (NX, NY, NZ)

2) For near zone fields, is the number of sample points correct?

(NTEST)

3) Is parameter NZFZ defined correctly for desired field

outputs?

4) Is parameter MAGNET defined correctly for the type of

scatterer?

5) Is the number of dispersive dielectric (NEDISP) and

dispersive magnetic (NHDISP) materials defined correctly?

6) Is the number of time steps correct? (NSTOP)

7) Are the cell dimensions (DELX, DELY, DELZ) defined correctly?

8) Are the incidence angles (THINC, PHINC) defined correctly?

9) Is the polarization of the incident wave defined correctly

(ETHINC, EPHINC)?

I0) For other than backscatter far zone field computations, are

the scattering angles set correctly? (THETFZ, PHIFZ)

SUBROUTINE BUILD:

i) Is the object completely and correctly specified?

SUBROUTINE SETUP:

i) Are the constitutive parameters for each material specified

correctly? (EPS, XMU, SIGMA, SIGMAC)

2) Are the constitutive parameters for each dispersive material

defined correctly? (EPSSTA, EPSINF, RELAXT, RELSIG, XMUINF,

XMUSTA, RELAXT, RELSIG)
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FUNCTIONS SOURCEand DSRCE:

i) If the smooth cosine pulse is not desired, is it commented
out and the Gaussian pulse uncommented?

SUBROUTINEDATSAV:

i) For near zone fields, are the sampled field types and spatial
locations correct for each sampling point? (NTYPE, IOBS, JOBS,
MOBS)
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XI. FIGURE TITLES

Fig. 1 Standard three dimensional Yee cell showing placement

of electric and magnetic fields.

Fig. 2 Real part of relative permeability versus frequency for

0.25 dB magnetic foam.



Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. i0

Fig. ii

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18
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Imaginary part of relative permeability versus
frequency for 0.25 dB magnetic foam.

Relative magnetic susceptibility versus time for 0.25
dB magnetic foam.

Real part of relative permeability versus frequency for
60 dB magnetic foam.

Imaginary part of relative permeability versus
frequency for 60 dB magnetic foam.

Relative magnetic susceptibility versus time for 60 dB
magnetic foam.

Real part of relative permeability versus frequency for
Nickel Ferrite with _s = i00, _® = i, T0 = 20 ns.

Imaginary part of relative permeability versus

frequency for Nickel Ferrite with _s = I00, _® = i, To

= 20 ns.

Relative magnetic susceptibility versus time for Nickel
Ferrite.

Co-polarized far zone scattered field versus time for

0.25 dB dielectric foam sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

0.25 dB dielectric foam sphere with 20 cm radius.

Co-polarized far zone scattered field versus time for

0.25 dB magnetic foam sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

0.25 dB magnetic foam sphere with 20 cm radius.

Co-polarized far zone scattered field versus time for

60 dB dielectric foam sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

60 dB dielectric foam sphere with 20 cm radius.

Co-polarized far zone scattered field versus time for

60 dB magnetic foam sphere with 20 cm radius.

Co-polarized Radar Cross Section versus frequency for

60 dB magnetic foam sphere with 20 cm radius.



Fig. 19

Fig. 20

25

Co-polarized far zone scattered field versus time for

Nickel Ferrite sphere with 6.67 m radius using both

dispersive FDTD and non-dispersive FDTD.

Co-polarized Radar Cross Section versus frequency for

Nickel Ferrite sphere with 6.67 m radius using both

dispersive FDTD and non-dispersive FDTD.
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I. INTRODUCTION

The Penn State Finite Difference Time Domain Electromagnetic

Scattering Code Versions TEA and TMA are two dimensional

numerical electromagnetic scattering codes based upon the Finite

Difference Time Domain Technique (FDTD) first proposed by Yee [i]

in 1966. The supplied version of the codes are two versions of

our current two dimensional FDTD code set. This manual provides

a description of the codes and corresponding results for the

default scattering problem. The manual is organized into eleven

sections: introduction, Version TEA and TMA code capabilities, a

brief description of the default scattering geometry, a brief

description of each subroutine, a description of the include

files (TEACOM.FOR TMACOM.FOR), a section briefly discussing

scattering width computations, a section discussing the

scattering results, a sample problem setup section, a new problem

checklist, references and figure titles.

II. VERSION TEA AND TMA CODE CAPABILITIES

The Penn State University FDTD Electromagnetic Scattering

Code Versions TEA and TMA have identical capabilities except the

TEA code has electric field perpendicular to the z axis and the

TMA code has electric field parallel to the z axis. Each code

has the following capabilities:

i) Ability to model lossy dielectric and perfectly conducting

scatterers.

2) First and second order outer radiation boundary condition

(ORBC) operating on the electric fields for dielectric or

perfectly conducting scatterers.

3) Near to far zone transformation capability to obtain far zone

scattered fields.

4) Gaussian and smooth cosine incident waveforms with arbitrary

incidence angles.

5) Near zone field, current or power sampling capability.

6) Companion codes for computing scattering width.

IiI. DEFAULT SCATTERING GEOMETRY

The codes as delivered are set up to calculate the far zone

backscatter fields for an infinite, 0.25 m radius, perfectly

conducting cylinder. The problem space size is 201 by 201 cells

in the x and y directions, the cells are 1 cm squares, and the

incident waveform is a Gaussian pulse with incidence angle of

_=180 degrees. The output data files are included as a reference

along with codes (SWTEA.FOR, SWTMA.FOR) for computing the



frequency domain scattering width using these output data files.
The ORBC is the second order absorbing boundary condition set
forth by Mur [2].

IV. SUBROUTINE DESCRIPTION

In the description for each subroutine, an asterisk (*) will

be placed by the subroutine name if that particular subroutine is

normally modified when defining a scattering problem. Also, each

subroutine will be denoted if it is applicable to the TE code

only, the TM code only, or to both codes.

MAIN ROUTINE (TE, TM)

The main routine in the program contains the calls for all

necessary subroutines to initialize the problem space and

scattering object(s) and for the incident waveform, far zone

transformation, field update subroutines, outer radiation

boundary conditions and field sampling.

The main routine begins with the include statement and then

appropriate data files are opened, and subroutines ZERO, BUILD
and SETUP are called to initialize variables and/or arrays, build

the object(s) and initialize the incident waveform and

miscellaneous parameters, respectively. Subroutine SETFZ is

called to intialize parameters for the near to far zone

transformation if far zone fields are desired.

The main loop is entered next, where all of the primary

field computations and data saving takes place. During each time

step cycle, the EXSFLD (TE), EYSFLD (TE), and EZSFLD (TM)

subroutines are called to update the x, y, and z components of

the scattered electric field. These scattered field equations

are based upon the development given in [3]. RADEXY, RADEYX (TE)

and RADEZX, RADEZY (TM) outer radiation boundary conditions are

called next to absorb any outgoing scattered fields. Time is

then advanced 1/2 time step according to the Yee algorithm and

then the HXSFLD (TM), HYSFLD (TM), AND HZSFLD (TE) subroutines

are called to update the x, y, and z components of scattered

magnetic field. Time is then advanced another 1/2 step and then

either near zone fields are sampled and written to disk in

DATSAV, and/or the near zone to far zone vector potentials are

updated in SAVFZ. The parameter NZFZ (described later) in the

common file defines the type of output fields desired.

After execution of all time steps in the main field update

loop, subroutine FAROUT is called if far zone fields are desired

to compute the far zone fields and write them to disk. At this

point, the execution is complete.
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SUBROUTINESETFZ (TE, TM)

This subroutine initializes the necessary parameters
required for far zone field computations. The codes as furnished
compute backscatter far zone field and can compute bistatic far
zone fields for one scattering angle (i.e. one @ angle). Refer
to reference [4] for a complete description of the two
dimensional near to far zone transformation. Other versions of
this subroutine provide for multiple bistatic angles.

SUBROUTINESAVFZ (TE, TM)

This subroutine updates the near zone to far zone vector
potentials.

SUBROUTINEFAROUT (TE, TM)

This subroutine changes the near zone to far zone vector
potentials to far zone electric field 8 (TM) and @ (TE)
components and writes them to disk.

SUBROUTINEBUILD (TE, TM) *

This subroutine "builds" the scattering object(s) by
initializing the IDONE (TE), IDTWO (TE), and IDTHRE (TM) arrays.
The IDONE-IDTHRE arrays are for specifying perfectly conducting
and lossy dielectric materials. Refer to Figure 1 for a diagram
of the basic two dimensional Yee cell for the TE and TM case.
For example, setting an element of the IDONE array at some I,J
location is actually locating dielectric material at a cell edge
whose center location is I+0.5,J. Thus, materials with diagonal
permittivity tensors can be modeled. The default material type
for all ID??? arrays is 0, or free space. By initializing these
arrays to values other than 0, the user is defining an object by
determining what material types are present at each spatial
location. Other material types available for IDONE-IDTHRE are 1
for perfectly conducting objects and 2-9 for lossy non-magnetic
dielectrics. It is assumed throughout the code that all
dielectric materials are non-magnetic (i.e. the materials have a
permeability of _0)" This subroutine also has a section that
checks the ID??? arrays to determine if legal material types have
been defined throughout the problem space. The actual material
parameters (_ and a) are defined in subroutine SETUP. The

default geometry is a 0.25 m radius, perfectly conducting

cylinder.

The user must be careful that his/her object created in the

BUILD subroutine is properly formed.

When it is important to place the object in the center of

the problem space, NX and NY should be odd. This is due to the



field locations in the Yee cell and also the placement of the E
field absorbing boundary condition surfaces.

If the object being modeled has curved surfaces, edges, etc.
that are at an angle to one or more of the coordinate axes, then
that shape must be approximately modeled by lines and faces in a
"stair-stepped" (or stair-cased) fashion. This stair-cased
approximation introduces errors into computations at higher
frequencies. Intuitively, the error becomes smaller as more
cells are used to stair-case a particular object.

SUBROUTINEDPLATE (TE)

This subroutine builds squares of dielectric material by
defining two each of IDONE and IDTWO components corresponding to
one spatial square of dielectric material. It can also be used
to define thin (i.e. up to one cell thick) dielectric or
perfectly conducting wires. Refer to comments within DPLATE for
a description of the arguments and usage of the subroutine.

SUBROUTINESETUP (TE, TM) *

This subroutine initializes many of the constants required
for incident field definition, field update equations, outer
radiation boundary conditions and material parameters. The
material parameters _ and a are defined for each material type

using the material arrays EPS and SIGMA respectively. The array

EPS is used for the total permittivity and SIGMA is used for the

electric conductivity. These arrays are initialized in SETUP to

free space material parameters for all material types and then

the user is required to modify these arrays for his/her

scattering materials. Thus, for the lossy dielectric material

type 2, the user must define EPS(2) and SIGMA(2). The remainder

of the subroutine computes constants used in field update

equations and boundary conditions and writes the diagnostics

file.

SUBROUTINE EXSFLD (TE)

This subroutine updates all x components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDONE array are used to determine the type of material present

and the corresponding update equation to be used.

SUBROUTINE EYSFLD (TE)

This subroutine updates all y components of scattered

electric field at each time step except those on the outer

boundaries of the problem space. IF statements based upon the

IDTWO array are used to determine the type of material present

and the corresponding update equation to be used.



SUBROUTINEEZSFLD (TM)

This subroutine updates all z components of scattered
electric field at each time step except those on the outer
boundaries of the problem space. IF statements based upon the
IDTHRE array are used to determine the type of material present
and the corresponding update equation to be used.

SUBROUTINESRADEYX, RADEXY (TE) and RADEZX, RADEZY (TM)

These subroutines apply the outer radiation boundary
conditions to the scattered electric field on the outer
boundaries of the problem space.

SUBROUTINEHXSFLD (TM)

This subroutine updates all x components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEHYSFLD (TM)

This subroutine updates all y components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEHZSFLD (TE)

This subroutine updates all z components of scattered
magnetic field at each time step. The standard non-magnetic
update equation is used.

SUBROUTINEDATSAV (TE, TM) *

This subroutine samples near zone scattered field quantities
and saves them to disk. This subroutine is where the quantities
to be sampled and their spatial locations are to be specified and
is only called if near zone fields only are desired or if both
near and far zone fields are desired. Total field quantities can
also be sampled. See comments within the subroutine for
specifying sampled scattered and/or total field quantities. When
sampling magnetic fields, remember the 6t/2 time difference

between E and H when writing the fields to disk. Sections of

code within this subroutine determine if the sampled quantities

and the spatial locations have been properly defined.

FUNCTIONS EXI, EYI (TE) and EZI (TM)

These functions are called to compute the x, y and z

components of incident electric field. The functional form of

the incident field is contained in a separate function SOURCE.



FUNCTION SOURCE(TE, TM) *

This function contains the functional form of the incident
field. The code as furnished uses the Gaussian form of the
incident field. An incident smooth cosine pulse is also
available by uncommenting the required lines and commenting out
the Gaussian pulse. Thus, this function need only be modified if
the user changes the incident pulse from Gaussian to smooth
cosine. A slight improvement in computing speed and
vectorization may be achieved by moving this function inside each
of the incident field functions EXI, EYI and so on.

FUNCTIONS DEXI, DEYI (TE) and DEZI (TM)

These functions are called to compute the x, y and z
components of the time derivative of incident electric field.
The functional form of the incident field is contained in a
separate function DSRCE.

FUNCTION DSRCE (TE, TM) *

This function contains the functional form of the time
derivative of the incident field. The code as furnished uses the
time derivative of the Gaussian form of the incident field. A
smooth cosine pulse time derivative is also available by
uncommenting the required lines and commenting out the Gaussian
pulse. Thus, the function need only be modified if the user
changes from the Gaussian to smooth cosine pulse. Again, a
slight improvement in computing speed and vectorization may be
achieved by moving this function inside each of the time
derivative incident field functions DEXI, DEYI and so on.

SUBROUTINEZERO (TE, TM)

This subroutine initializes various arrays and variables to
zero.

V. INCLUDE FILE DESCRIPTION (TEACOM.FOR, TMACOM.FOR) *

The include files, TEACOM.FOR, TMACOM.FOR, contain all of

the arrays and variables that are shared among the different

subroutines. These files will require the most modifications

when defining scattering problems. A description of the

parameters that are normally modified follows.

The parameters NX and NY specify the size of the problem

space in cells in the x and y directions respectively. For

problems where it is crucial to center the object within the

problem space, then NX and NY should be odd. The parameter NTEST

defines the number of near zone quantities to be sampled and NZFZ

defines the field output format. Set NZFZ=0 for near zone fields

only, NZFZ=I for far zone fields only and NZFZ=2 for both near



and far zone fields. Parameter NSTOPdefines the maximum number
of time steps. DELX and DELY (in meters) define the cell size in
the x and y directions respectively. The _ incidence angle (in
degrees) is defined by PHINC and the polarization is defined by
the code that is being used:2 Parameters AMP and BETA define the
maximum amplitude and the e temporal width of the incident
pulse respectively. BETA automatically adjusts when the cell
size is changed and normally should not be changed by the user.
The far zone scattering angle is defined by PHIFZ. The codes as
furnished perform backscatter computations, but this parameter
could be modified for a bistatic computation.

VI. SCATTERING WIDTH COMPUTATIONS

Companion codes, SWTEA.FOR, SWTMA.FOR, have been included to

compute scattering width versus frequency. Each code uses the

file name of the FDTD far zone output data (FZOUTTE.DAT,

FZOUTTM.DAT) and writes data files of far zone electric field

versus time (FZTE.DAT, FZTM.DAT) and scattering width versus

frequency (SWTE.DAT, SWTM.DAT). The scattering width

computations are performed up to the i0 cell/l 0 frequency limit.
Refer to comments within these codes for further details.

VII. RESULTS

As previously mentioned, the codes as furnished model an

infinite, 0.25 m radius, perfectly conducting cylinder and

compute backscatter far zone scattered field at an angles of

_=180 degrees.

Figures 2-4 show the TM far zone electric field versus time

and the scattering width magnitude and phase for the 0.25 m

radius perfectly conducting cylinder. Keep in mind that the far
zone time domain electric field shown here is not the actual time

domain scattered field. The actual far zone time domain

scattered field can be obtained by an FFT of the FDTD time domain

results, then multiplying the FFT by the appropriate frequency

domain factor (described in [4]) and performing an inverse FFT.

Figures 5-7 show the TE far zone electric field versus time

and the scattering width magnitude and phase for the 0.25 m

radius perfectly conducting cylinder.

VIII. SAMPLE PROBLEM SETUP

The codes as furnished model an infinite, 0.25 m radius,

perfectly conducting cylinder and compute backscatter far zone

scattered field at an angle of _=180 degrees. The corresponding

output data files are also provided, along with codes to compute

scattering width using these data files. In order to change the

code to a new problem, many different parameters need to be

modified. A sample problem setup will now be discussed.
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Suppose that the problem to be studied is scattering width
backscatter versus frequency from a 0.30 m radius dielectric
cylinder with a dielectric constant of 4E0 using a 8-polarized
field. The backscatter angle is _=60.0 degrees and the frequency
range is up to 3 Ghz.

The incident field is 8-polarized which indicates the TM
code must be used. Since the frequency range is up to 3 Ghz, the
cell size must be chosen appropriately to resolve the field IN
ANY MATERIAL at the highest frequency of interest. A general
rule is that the cell size should be i/i0 of the wavelength at
the highest frequency of interest. For difficult geometries,
1/20 of a wavelength may be necessary. The free space wavelength
at 3 GHz is 10=10 cm and the wavelength in the dielectric coating
at 3 GHz is 5 cm. The cell size is chosen as 1 cm, which
provides a resolution of 5 cells/l in the dielectric coating and
i0 cells/A 0 in free space. Numerical studies have shown that
choosing the cell size _ 1/4 of the shortest wavelength in any
material is the practical lower limit. Thus the cell size of 1
cm is barely adequate. The cell size in the x and y directions
is set in the common file through variables DELX and DELY. Next
the problem space size must be large enough to accomodate the
scattering object, plus at least a five cell boundary (i0 cells

is more appropriate) on every side of the object to allow for the

far zone field integration surface. The default problem space

size of 201 by 201 is adequate and provides a 75 cell border

around the cylinder. As an initial estimate, allow 2048 time

steps so that energy trapped within the dielectric layer will

radiate. Thus parameter NSTOP is changed to 2048. If all

transients have not been dissipated after 2048 time steps, then

NSTOP will have to be increased. Truncating the time record

before all transients have dissipated will corrupt frequency

domain results. Parameter NZFZ must be equal to 1 since we are

interested in far zone fields only. To build the object, simply

change the RADIUS variable in the BUILD subroutine to 0.30. In

the common file, the incidence angle PHINC has to be changed to

60.0 respectively, and the cell sizes (DELX and DELY) are set to

0.01. Since dielectric material 2 is being used for the

dielectric coating, the constitutive parameters EPS(2) and

SIGMA(2) are set to 4_ 0 and 0.0 respectively, in subroutine

SETUP. This completes the code modifications for the sample
problem.

IX. NEW PROBLEM CHECKLIST

This checklist provides a quick reference to determine if

all parameters have been defined properly for a given scattering

problem. A reminder when defining quantities within the code:

use MKS units and specify all angles in degrees.



TEACOM.FOR, TMACOM.FOR:

i) Is the problem space sized correctly?

ii

(NX, NY)

2) For near zone fields, is the number of sample points correct?
(NTEST)

3) Is parameter NZFZ defined correctly for desired field
outputs?

4) Is the number of time steps correct? (NSTOP)

5) Are the cell dimensions (DELX, DELY) defined correctly?

6) Is the incidence angle (PHINC) defined correctly?

7) For other than backscatter far zone field computations, is
the scattering angle set correctly? (PHIFZ)

SUBROUTINEBUILD:

I) Is the object completely and correctly specified?

SUBROUTINESETUP:

i) Are the constitutive parameters for each material specified
correctly? (EPS and SIGMA)

FUNCTIONS SOURCEand DSRCE:

i) If the Gaussian pulse is not desired, is it commented out and
the smooth cosine pulse uncommented?

SUBROUTINEDATSAV:

i) For near zone fields, are the sampled field types and spatial
locations correct for each sampling point? (NTYPE, IOBS, JOBS)

X. REFERENCES

[i] K. S. Yee, "Numerical solution of initial boundary value

problems involving Maxwell's equations in isotropic media,"

IEEE Trans. Antennas Propaqat., vol. AP-14, pp. 302-307, May

1966.

[2] G. Mur, "Absorbing boundary conditions for the Finite-

Difference approximation of the Time-Domain Electromagnetic-

Field Equations," IEEE Trans. Electromaqn. Compat., vol.

EMC-23, pp. 377-382, November 1981.



[3]

[4]

12

R. Holland, L. Simpson and K. S. Kunz, "Finite-Difference
Analysis of EMP Coupling to Lossy Dielectric Structures,"
IEEE Trans. Electromaqn. Compat., vol. EMC-22, pp. 203-209,

August 1980.

R.J. Luebbers et. al., "A Two-Dimensional Time-Domain Near

Zone to Far Zone Transformation," submitted to IEEE Trans.

Antennas Propaqat. for publication, May 1991.

XI. FIGURE TITLES

Fig. 1 Standard two dimensional Yee cell showing placement of

electric and magnetic fields for the TE and TM case.

Fig. 2 Far zone scattered field versus time for 0.25 m radius

perfectly conducting cylinder using TM polarization.

Fig. 3 Scattering width magnitude versus frequency for 0.25 m

radius perfectly conducting cylinder using TM

polarization.

Fig. 4 Scattering width phase versus frequency for 0.25 m

radius perfectly conducting cylinder using TM

polarization.

Fig. 5 Far zone scattered field versus time for 0.25 m radius

perfectly conducting cylinder using TE polarization.

Fig. 6 Scattering width magnitude versus frequency for 0.25 m

radius perfectly conducting cylinder using TE

polarization.

Fig. 7 Scattering width phase versus frequency for 0.25 m

radius perfectly conducting cylinder using TE

polarization.
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Abstract

In a previous paper [i] a time domain transformation useful

for extrapolating three dimensional near zone finite difference

time domain (FDTD) results to the far zone was presented. In

this paper the corresponding two dimensional transform is

outlined. While the three dimensional transformation produced a

physically observable far zone time domain field, this is not

convenient to do directly in two dimensions, since a convolution

would be required. However, a representative two dimensional far

zone time domain result can be obtained directly. This result

can then be transformed to the frequency domain using a Fast

Fourier Transform, corrected with a simple multiplicative factor,

and used, for example, to calculate the complex wideband

scattering width of a target. If an actual time domain far zone

result is required it can be obtained by inverse Fourier

transform of the final frequency domain result.



Introduction

A previous paper [i] described a method for transforming

near zone Finite Difference Time Domain (FDTD) results directly

to the far zone without first transforming to the frequency

domain. This far zone field could then be used to compute the

scattering cross section of an illuminated target or an antenna

radiation pattern over the entire frequency band of the FDTD

calculations. A similar result was published in [2]. In this

paper the corresponding two dimensional transform is presented,

and validated by comparison with calculated results for a

perfectly conducting circular cylinder.

Approach

In [i] the frequency domain far zone transformation

equations were Fourier transformed to the time domain and used in

that form to derive an approach to transform near zone FDTD

fields to the far zone directly in the time domain. Our approach

here will be to present the fundamental frequency domain

equations for both two and three dimensions, and by comparing

them obtain the factor needed to convert the three dimensional

far zone transform to function in two dimensions.

We again surround the scatterer with a closed surface S',

and consider that equivalent tangential electric and magnetic

time harmonic surface currents may exist on this surface.

Referring to [3], we obtain the vector potentials for the three

dimensional case as

- e -jkr f --4_r Js eJkF'f ds/
S i

(i)



_ e -jkr f --
F-- j M s e jkr_¢ ds j4_r

S j

C2)

with j=_ , k = _ (the wave number), the unit vector

to the far zone field point, 5 / the vector to the source point

of integration, r the distance to the far zone field point, and

S' the closed surface surrounding the scatterer.

The far zone frequency domain electric fields of the

scatterer are then obtained from

E 8 = -j_ A 8 - j_ F_
(3)

E_ = - j_ A_ ÷ j_ F e
(4)

One can then easily convert to radar cross section (RCS), if

desired, by applying

1_3D =

S

I E3D]2
lim (4_r2 )

r-_ iEi 12

(5)

S

where E3D is either E 0 or E_ of (2) or (3), and E i is the

incident plane wave electric field.



In [i] the equations corresponding to (1,2) were easily
transformed to the time domain since the exponential phase term

inside the integrals corresponds to a time shift relative to an

arbitrary time reference point. Equations corresponding to (2,3)

were also readily transformed to the time domain since the js

factor in these equations corresponds to a time derivative. Thus

the resulting time domain fields can be obtained conveniently

directly in the time domain, as shown in [i].

Now consider the corresponding equations in two dimensions.

The vector potentials are given by

-jkp
-- e [ e jkp'c°s(_-e')A - Js ds/ (6)

/8jk_p

e-JkP
- r Ms eJk6c°'('_') ds/ (V)

where p' and _' are the coordinates of the source point of

integration, and @ and _ the coordinates of the far zone field

point. The corresponding far zone radiated fields are obtained

from

E z = -j_ A z + j_ F_
(8)

E_ = - j_ A_ - j_ F z
(9)

Also, the two dimensional scattering width is defined as

s 2
lira I E2ot

a2o = p.-_o (2rrp )IEil 2
(lo)



$

where E2D is either E z or E_ of (8,9).

The approach applied in [i] cannot be conveniently applied

in the two dimensional case due to the factor of I/V_

(actually I/j_-_-_ ) in (6,7). In order to evaluate the

Fourier transform of (6,7) directly in the time domain a

convolution operation would be required. To avoid this

complication our approach will be to modify the results in [I] to

provide representative two dimensional time domain far zone

fields which can then be converted to the actual frequency domain

fields by a multiplication in the frequency domain rather than

the time domain convolution. Should the actual time domain far

zone fields be required, they can then be obtained by an

additional Fourier transform of these results back to the time

domain.

In order to convert our previous three dimensional results

to two dimensions, we compare the two sets of equations. First,

comparing (3,4) with (8,9), since the spherical unit 8 vector is

equal to the negative of the cylindrical unit z vector, (3,4) and

(8,9) correspond exactly, and no adjustment between two and three

dimensional transforms is needed.

Next, comparing (1,2) with (6,7) the r z and p factors are

compensated by the definitions in (5) and (I0) respectively, as

expected, and no compensation is needed here either.

Finally, consider equations (1,2) vs (6,7). The additional

dimension of integration in (1,2) is compensated for by defining

a scattering width per unit length (in z) in (i0). This



corresponds in (1,2) to having no z variation and integrating the
z' variable over a unit distance. The exponents provide

equivalent phase (time) delays and need not be compensated for.

Considering the remaining factors, it is easily determined that

in the frequency domain, the relationship between far zone
electric fields obtained from a three dimensional far zone

transformation with no z variation and the two dimensional far

zone fields is

!
s I 2_C s (ii)

where c = i/_

With these results the time domain far zone transform given

in [i] can be easily adapted to two dimensions as follows:

i) Consider only the field components and corresponding surface

currents excited in the two dimensional problem. For example,

for a TE z computation only Hz, Ex, Ey, and the corresponding

surface currents are included.

2) Calculate the far zone time domain fields using the method

described in [i], but for a two dimensional integration surface

which encloses the scatterer. Let 6z, the z coordinate unit cell

dimension used in [I], equal 1 (meter). (This field is not a

physically observable field. It represents the radiation from a

unit length of the scatterer in the time domain.)

3) Fourier transform the result of step 2) and multiply the

result by the factor in (ii). This result is the frequency

domain two dimensional far zone field, which can then be used in



(i0) to calculate the scattering width as a function of

frequency.

4) If the actual time domain two dimensional far zone field is

desired, it can be obtained by an additional Fourier
transformation of the result obtained in 3) back to the time

domain.

Demonstration

In order to demonstrate the capabilities of the above

approach a pair (TE z and TMz) of FDTD codes were developed from

the three dimensional FDTD code described in [i]. These codes

utilize second order Mur absorbing boundary conditions acting on

the electric fields. The test geometry was a circular perfectly

conducting cylinder of radius 0.25 meters.

Both TE and TM polarization was considered, and two sets of

calculations were made for each polarization. For the first set

the FDTD cells were 1 cm squares, with a problem space 200x200

cells. For the second set the cells were 0.5 cm squares in a

500x500 cell problem space. On a 25 MHz 486 PC (approximately 1

MFLOP) each of the first set required about 20 minutes to

compute, with each of the second set requiring a few minutes less

than 2 hours.

For all cases the incident plane wave traveled in the x

direction, backscatter was calculated, and 2048 time steps were

evaluated. In order to clearly show the response, not all time

steps are included in the Figures.

Figure i shows the relative far zone fields computed

directly in the time domain as outlined above for the TM

polarization. The small ripple at approximately 15 ns on Figure

1 is due to reflections from the Mur outer boundary. Figures 2

and 3 show comparison with the exact solution for the scattering



width amplitude and phase. The upper frequency limit of 3.0 GHz

corresponds to i0 cells per wavelength. The agreement is quite

good.

A similar set of data for TE polarization is shown in

Figures 4-6. The time domain far zone results in Figure 4 has

ripples in the 6-8 ns range due to the staircasing of the round

cylinder with square FDTD cells. The small negative pulse at i0

ns is the creeping wave which has traveled around the cylinder.

Again, there is a small ripple at 14 ns due to the Mur boundary

reflection. This is the difficult polarization for approximating

a smooth surface with a "staircased" FDTD code, yet the agreement

in Figures 5 and 6 is reasonably good, reproducing the first 6

1/2 ripples in the scattering width.

The above calculations are repeated in Figures 7-13 with a

greater expenditure of computer resources. For these results the

cell size of 0.5 cm changes the 3.0 GHz upper frequency limit of

the plots to correspond to 20 cells per wavelength. The

improvement in the agreement with the exact solution is clear,

indicating the accuracy that can be obtained from this approach.

Note especially Figure 12, which shows on a expanded dB scale

agreement with the exact solution within a fraction of a dB for

the first 9 lobes of the response.

Conclusions

A simple approach to calculating a wide bandwidth time

domain transformation of near zone FDTD fields to the far zone

has been presented. It is based on simple modifications to the

previous three dimensional method presented in [I]. Results

obtained using this transformation show good agreement with the

exact solution for a circular cylinder for both polarizations.
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Fiqure Titles

Fig I. Far Zone relative electric field vs time for TM z

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are 1 cm squares.

Fig 2. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 3. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 4. Far Zone relative electric field vs time for TE z

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are i cm squares.

Fig 5. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 6. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 7. Far Zone relative electric field vs time for TM z

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are 0.5 cm squares.

Fig 8. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.



Fig 9. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.

Fig I0. Far Zone relative electric field vs time for TEz

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are 0.5 cm squares.

Fig ii. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.

Fig 12. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution on an

expanded dB scale. FDTD cells are 0.5 cm squares.

Fig 13. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.
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ABSTRACT

Surface impedance boundary conditions are employed to reduce

the solution volume during the analysis of scattering from lossy

dielectric objects. In a finite difference solution, they also can

be utilized to avoid using small cells, made necessary by shorter

wavelengths in conducting media throughout the solution volume.

The standard approach is to approximate the surface impedance over

a very small bandwidth by its value at the center frequency, and

then use that result in the boundary condition. In this paper, two

implementations of the surface impedance boundary condition are

presented. One implementation is a constant surface impedance

boundary condition and the other is a dispersive surface impedance

boundary condition that is applicable over a very large frequency

bandwidth and over a large range of conductivities. Frequency

domain results are presented in one dimension for two conductivity

values and are compared with exact results. Scattering width

results from an infinite square cylinder are presented as a two
dimensional demonstration. Extensions to three dimensions should

be straightforward.

I. Introduction

The Finite Difference Time Domain (FDTD) technique permits the

analysis of interactions of electromagnetic waves with objects of

arbitrary shape and material composition. This method was first

proposed by Yee [i] for isotropic, non-dispersive materials in

1966; and through various modifications during the past twenty

years, it has evolved into a mature computational technique.

Reference [2] and the references contained therein provide an

account of various extensions and modifications of the original

FDTD algorithm. The present FDTD technique is capable of

electromagnetic scattering analysis from objects of arbitrary and

complicated geometrical shape and material composition over a large

band of frequencies. This technique has recently been extended to

include dispersive dielectric materials [3], chiral materials [4]

and plasmas [5]. Due to these numerous capabilities, the FDTD

method has begun to gain widespread acceptance as a viable

computational alternative to the classical method of moments (MM)

technique for many problems.

To analyze electromagnetic field interaction with lossy

dielectric objects, the FDTD method requires that the interior of

the object be modeled in order for fields to penetrate the body.

Accurate modeling often requires a very fine spatial grid resulting

in a relatively large number of cells for moderately sized objects.

A highly conducting dielectric object can be replaced by a surface

impedance boundary condition (SIBC) that is a function of the

material parameters. Thus, this boundary condition eliminates the

spatial quantization of the object and reduces the overall size of

the solution space not only by eliminating cells within the lossy

dielectric, but also by allowing larger cells to be used in the



exterior region. As with any computational electromagnetic tool, a
technique that reduces the solution space or number of unknowns is
quite welcome.

Of historical interest, surface impedance boundary conditions
were first proposed by Leontovich in the 1940's [6] and were
rigorously developed by Senior in 1960 [7]. During the past thirty
years, researchers have applied surface impedance concepts in the
frequency domain to numerous electromagnetic scattering problems.
Time domain surface impedance concepts received little attention
until recently. Through some impressive work, Maloney and Smith
[8] have previously implemented a surface impedance boundary
condition in the FDTD method. However, their implementation has a
minor disadvantage because the exponential rates and coefficients
for recursive updating have to be reevaluated eac____hhtime the
conductivity or loss tangent is changed. With our proposed method,
the exponential rates and coefficients only have to be evaluated
once. Tesche [9] has also investigated surface impedance concepts
in an integral equation time domain solution, but presented limited
computational time domain results.

It is the purpose of this paper to introduce a constant
surface impedance boundary condition that is applicable for a
single frequency and a dispersive surface impedance boundary
condition that is applicable over a large frequency bandwidth and
range of conductivities. The dispersive surface impedance includes
frequency variations which results in a time domain boundary
condition involving a convolution. We will then show how to
efficiently evaluate this convolved surface impedance using
recursion.

II. Motivation

The motivation for implementing a SIBC in the FDTD method is
to reduce the computational resource requirements for modeling
highly conducting lossy dielectric objects. In the standard FDTD
method, modeling highly conducting lossy dielectric objects

requires that the cell size be chosen small enough to resolve the

field inside the object at the maximum frequency of interest. For

example, suppose scattering from a lossy dielectric object with

permeability _, permittivity E and conductivity a=2.0 S/m is to be

studied over the frequency band 0-i0 GHz. The cell size must be

chosen as some fraction of the wavelength inside the conducting

material at the maximum frequency of interest. Thus the cell size

is chosen (typically) as

1 I0
6x -- 6y = 6z = ° - (i)

I0 lOV_r I
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where _r is the complex relative permittivity constant of the

material and i and 10 are the wavelengths inside the material and

in free space at i0 GHz, respectively. The complex permittivity

for lossy dielectrics in the frequency domain is

o
= E + -- (2)

j_

where _ is the radian frequency.

is determined using (2) as

6o

The complex relative permittivity

o
-6r+_ (3) •

j6_E 0

If the material is a good conductor over all frequencies of

interest, then the constitutive parameters satisfy the condition

o
>> 1 (4).

WE

Therefore, _r can be approximated as

_r _ a

j_6 o

(5) .

Assuming parameters _=#0 and E=60 and using the values of _r and I0

at i0 GHz, the cell size is 6x = 6y = 6z = 1.582 mm. If a SIBC is

used, then the cell size need only be chosen to resolve the field

in free space and (i) is modified to

6XsIBC = 6YsIBC = 6ZsIBC = _.0/i0 (6) •

Again, using the value for 10 at i0 GHz, the cell size is 6XsiBc =

6YsiBc = 6ZsiBc = 3.0 mm. Thus the cell size has been increased by

the factor _l_rl =1.90, and the computational storage requirements

are reduced by the same factor. Therefore, the computational

savings, denoted by S, is

s °
where _r is given by (5), (4) is satisfied for all frequencies of

interest and d is the number of dimensions.
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III. FDTD Constant Surface Impedance Implementation

To implement the constant SIBC in the FDTD method we consider

the planar air-lossy dielectric interface as shown in Figure i.

The conducting material has permittivity £, permeability _ and

conductivity a. We assume that the thickness of the material is

large compared to the skin depth. We will also assume that the

material is linear and isotropic and a basic familiarity with the

Yee algorithm [i]. Figure 1 also shows the one-dimensional FDTD

grid.

The first order (or Leontovich) impedance boundary condition

relates tangential total field components and is given in the

frequency domain as [6]

Ex(_ ) = Zs(_)Hy(_ ) (8)

where Zs(_ ) is the surface impedance of the conductor.
frequency domain surface impedance for good conductors is

Zs(_ ) = (l+j) TO = 0

The

(9) .

Using (9), (8) can be rewritten as

: + (10)

where R s is the surface resistance and X s is the surface reactance.
Consider rewriting (I0) as

(11)

with the resistance and inductance defined by

(12)
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To remove the frequency dependence of the surface resistance and
inductance, these quantities are evaluated at a particular
frequency and are subsequently treated as constants. Equation (Ii)
then becomes

Ex(_) = (Rs + j_Ls)Hy(_) (13) .

This is the required frequency domain constant surface impedance
boundary condition. To incorporate this boundary condition into
the FDTD algorithm, the time domain equivalent of (13) must be
obtained. Performing an inverse Fourier transform operation on
(13) results in

L _Hy(t) (14).Ex(t ) = RsHy(t ) + sat

This equation defines the time domain FDTD constant surface
impedance boundary condition.

To implement this constant surface impedance
condition, space and time are quantized by defining

z = (k6z) = (k)
t = (n6t) _ (n)

boundary

(15).

The Faraday-Maxwell law is then used to obtain the H component in
• Y

the free space cell next to the impedance boundary. Since the

impedance boundary condition requires that the electric and

magnetic fields are co-located in space and time, we assume that

the magnetic field 1/2 cell in front of the impedance boundary and

1/2 time step previous is an adequate approximation. The Faraday-

Maxwell law yields

(.0,x,z)[aa (n6t) Hyn(k+i/2)] = EXn(k+l)6x - EXn(k) 6x
(16) .

Note the component EXn(k+l) of (16) is the electric field component

at the impedance boundary. Quantizing space and time in (14) and

using the result to eliminate EXn(k+l) in (16) gives

(.0,z)[a(n6t) ] [aHyn(k+i/2) = RsHyn(k+i/2) +Ls a(n6t)

l

HY n(k+I/2) I - Exn (k)
J(17) .

Notice that the Hyn(k+I/2) term in (17) is time indexed at time

step n. This term is approximated as



1 [Hyn+I/2 Hyn-I/2 ]Hyn(k+i/2) = -- (k+i/2) + (k+i/2)
2

(18).

Using (18), and approximating the time derivatives on the magnetic

fields in (17) as finite differences gives

-(_06z+Ls) (HY n÷I/2(k+I/2)-HY n-I/2(k+1/2))- Rs6t(Hy n÷I/2(k+I/2)-HY n-I/2(k+1/2))
2

- 6tEXn(k) (19).

Solving for Hyn÷I/2(k+i/2) in (19) yields

HY n÷I/2(k+i/2) =I
P06z +L s-Rs6t/2 IHYn_I/2(k+I/2) -

_06z +L s +Rs6t/2 J
6t

_06z +L s+Rs6t/2

EXn (k)

(2O).

This equation implements the constant surface impedance boundary

condition in the FDTD method.

IV. FDTD Dispersive Surface Impedance Implementation

To derive a similar relation to (20) valid over a wide

frequency band, we begin with the same set of underlying

assumptions as for the constant surface impedance. The primary

exception is that the surface impedance will vary with frequency

and will not be approximated by its value at a particular

frequency. All frequency domain information is inversed Fourier

transformed to equivalent time domain form. The SIBC is then

implemented in the FDTD method with the required convolution using

a recursive updating technique.

The standard first order impedance boundary condition remains

unchanged and is given by (8). In a similar fashion as Tesche [9],

(8) is rewritten as

Ex(_) = j_[Zs(_) 1

[ j-----_jHy(_)

(21) .



Defining

I Zs(_)
Z_(_) : ---

j_
(22)

and substituting (9) into (22) gives

Zs (_) =
j_a

(23) .

Substituting (23) into (21), a modified surface impedance boundary

condition is obtained as

Ex(_ ) = Z/s(_) [j_Hy(_) ]
(24) .

The time domain equivalent of (24) is obtained via an inverse

Fourier transform operation as

--all(t)]E×(t) = Zls(t)* at y
(25)

where the asterisk denotes convolution,

E×(t) = _-1[Ex(_) ]

Hy(t) = _-1[Hy(_) ]

/ -I /
Zs(t ) = _ [Zs(_) ]

(26)

and the _-I denotes the inverse Fourier transform operation. Note

in (25) that as o_OO, the boundary condition becomes Ex(t)=0.0,

which is required for a perfect conductor. To determine Z_'(t),

the Laplace transform variable s=j_ is used in (23) to obtaln

I-! _ 1 (27) .
Zs(s ) :



Using the Laplace transform pair [Ii]

(28)

where the _I denotes the inverse Laplace transform operation; and

Zs' (t) is then determined to be

/ -1 / (29) .
Zs(t) : 3 [Z s(_) ] = _at

0 #

, t>0

t<0

This is the required time domain surface impedance function.

Substituting (29) into (25) and discretizing space and

according to (15) gives

time

i [ 1Exn (k+l) = _ , Hyn (k+i/2)

_a (n6t) @ (n6t)

(30).

Substituting (30) into (16) yields

-#06z a Hyn(k+I/2)] = I
a(n6t) _a(n6t)

a

@ (n6t) Hyn(k+i/2)l - EXn(k)
(31).

The convolution in (31) is expressed as a summation to obtain

 0,z[
@(n6t) _a m_ @((n-m) 6t)

Hyn_(k+i/2)IZ0(m ) -EXn(k)

(32)

where Z0(m) is the discrete impulse response. The discrete impulse

response is obtained by assuming the fields are piecewise constant

in time as

m+1/2

Z0(m) : -I/ id_

(33)
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If m=0, the lower limit in (33) is 0. Approximating the time
derivatives on the magnetic fields in (32) as finite differences
results in

n-1

m_
6t

+ -- EX n (k)

_06z (34)

where

!1 _6t
ZI - I

_0_z N _o

(35) .

Equation (34) is suitable for computer implementation and includes

the full convolution with all past field components. This full

convolution would be impractical for large three dimensional

problems; thus it is desirable to obtain a more efficient

implementation. The development of a recursive implementation is

the subject of the following section.

V. Recursive Implementation

Recently, Luebbers et. al. [3] extended the FDTD technique to

dispersive dielectric materials using a time domain susceptibility

function for polar dielectrics. In that paper, the time domain

susceptibility function was a decaying exponential which permits
the convolution summation to be recursively updated, thus avoiding

the need for the complete time history of field components. Upon

further examination of (34), it is clear that if Z0(m) can be

approximated by a series of exponentials, then the SIBC can be

efficiently evaluated using recursion. Figure 2 shows Z0(m) versus

m, and it is clear that it can be approximated by a series of

exponentials. Z0(m ) is approximated as

N

Z0(m ) =_aie_. m (36)
i=I

where N is the number of terms in the approximation. One of the

most accurate methods for obtaining an exponential approximation to

an exact function or to a data set is Prony's method [i0]. Figure

2 also shows the Prony approximation to Z0(m) with N=I0 and it is

clear that N=I0 provides an adequate approximation. Thus, using

(36) with N=I0 in (34) gives
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HYn÷I/2(k+i/2) =HYn-1/2(k+I/2) -
n-1

I° _[Hyn_+112 Hyn_-112 )]-ZI _ (k+i/2) - (k+i/2

l+ZlZ0 (0) i=Im=1

_m 6t
aie + Exn (k)

_06z (1+zlz0 (0))
(37)

where

I0

Zo(O) = _E_ai (38) .
i=I

The convolution can now be recursively updated (see Appendix) to

give

Hyn+I/2(k+i/2) = Hyn-I/2(k+i/2) -
Zl I0

1+ZlZo(o) :i

6t
+ EXn (k)

p06z (l+ZlZ0(0))

(39)

Note that only one past value of magnetic field is required to

update the convolution summation.

VI. One Dimensional Demonstration

To demonstrate the constant and recursive FDTD SIBC, (20) and

(39) were implemented in a one dimensional total field FDTD code

for the geometry shown in Figure i. The problem space size is 301

cells, the impedance boundary is located at cell 300, and the

electric field is sampled at cell 299. The maximum frequency of

interest for each problem was I0 GHz. The incident electric field

is a Gaussian pulse with maximum amplitude of i000 V/m and has a

total temporal width of 256 time steps. The frequency response of

the incident pulse contains significant information to 12 GHz. Two

computations were made with a=2.0 S/m and a=20.0 S/m. The loss

tangents at i0 GHz are 3.599, 35.99, respectively. The

permittivity and permeability for the lossy dielectric were those

of free space. The cell size and time step were 750 _m and 2.5

psec, respectively. A tie point of 5.0 GHz was chosen for the FDTD

constant SIBC. For each FDTD computation, a reflection coefficient

versus frequency was obtained by first dividing the Fourier

transform of the scattered field by the transform of the incident

field at cell 299. The incident field was obtained by running the

FDTD code with free space only and recording the electric field at

cell 299. The scattered field is then obtained by subtracting the
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time domain incident field from time domain total field. The
results are compared with the analytic surface impedance reflection
coefficient computed from

Izs(o) - (40)
IRI-- Iz,,(ol ,101

where Zs(O ) is given by (9) and _0 is the free space wave

impedance. The phase of the FDTD reflection coefficient was

corrected to account for the round trip phase shift of one cell

since the FDTD reflection coefficient is computed from electric

fields recorded one cell in front of the impedance boundary.

The high conductivity surface impedance of (9)

approximation to the general surface impedance for

dielectrics given by

f
joy

zs(o) -- |
N (_ + jOE

is an

lossy

(41) .

The advantage of using (9) over (41) for the FDTD SIBC

implementation is that the resulting time domain impulse response

is independent of the conductivity. The exponential approximation

needs to be performed only once and not each time the conductivity

is changed.

Figures 3-4 show the FDTD constant and recursive SIBC

reflection coefficient magnitude and phase results versus the

analytic SIBC results for _=2.0 S/m. Notice the agreement between

the curves is good, and the maximum error is about 0.02 at i0 GHz

in Figure 3.

Figures 5-6 show the FDTD constant and recursive SIBC

reflection coefficient magnitude and phase results versus the

analytic SIBC results for a=20.0 S/m. Notice the agreement between

the curves is excellent.

Since the FDTD SIBC implementation is an approximation to an

analytic SIBC, some amount of divergence between the SIBC curves

and the analytic SIBC solution is to be expected with increasing

frequency. As frequency increases, the effective number of cells

per wavelength decreases and the FDTD SIBC becomes a rougher

approximation to the analytic SIBC. To observe this error trend,

the same one-dimensional test problems as above (using the

dispersive SIBC only) were reevaluated with larger cell sizes equal

to twice and four times the original cell size. This is equivalent

to having 20 and i0 cells/l 0 in the free space region,
respectively. Figures 7 and 8 show the FDTD dispersive SIBC
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reflection coefficient magnitude and phase results versus the
analytic SIBC for a=2.0 S/m using the original cell size and the
larger cell sizes. Notice that for each increase in cell size, the
agreement between the SIBC curve and the exact solution is reduced
by a factor of two. This indicates that the error in the SIBC
implementation is O(6z) over the range of cell sizes examined here.
The constant SIBC exhibited similar agreement reductions at the 5
GHz tie point for larger cell sizes.

VIII. Two Dimensional Demonstration

As a practical application of the FDTD dispersive SIBC,
frequency domain scattering width was computed from an infinite
square cylinder for two scattering angles, @=0.0 and @=30.0 degrees
using a full two dimensional TM scattered field code. The cylinder

was 0.99 cm square and had parameters E=E 0, _=_0, and a=20.0 S/m.

To illustrate the applicability of the SIBC, the cylinder was

modeled in two ways. The first was a normal FDTD computation with

a grid size of i0 cells/l (at i0 GHz) inside the conducting

cylinder and the second was a SIBC computation with a grid size of

i0 cells/l in free space (at i0 GHz). Figur e 7 shows the two

dimensional field components and the cylinder dimensions (in cells)

for the FDTD and SIBC computations. For the FDTD computation, the

cylinder was modeled using 198 cells in the x and y directions, the

cell size was 500 _m, and the time step was 1.18 ps. For the SIBC

computation, the cylinder was modeled using 32 cells in the x and

y directions, the cell size was 0.003 m and the time step was 7.07

ps. For both computations, a i00 cell border between the cylinder

and the absorbing boundary was chosen, the total number of time

steps was 1024, and an incident Gaussian pulse with total pulse

width of 64 time steps was chosen. The near zone fields were

transformed to far zone fields by a two-dimensional near zone to

far zone transformation [12].

Figure i0 shows the scattering width magnitude versus

frequency for a scattering angle of @=0.0 degrees using the FDTD

computation and the SIBC computation. Notice the good agreement

over the entire frequency bandwidth for the dispersive SIBC.

Figure Ii shows the scattering width magnitude versus

frequency for a scattering angle of @=30.0 degrees using the FDTD

computation and the SIBC computation. Notice again the good

agreement over the entire frequency bandwidth for the dispersive

SIBC.

IX. Summary

One dimensional FDTD implementations of constant and

dispersive surface impedance boundary conditions have been

presented. The corresponding time domain impedance boundary

conditions have been derived and their validity demonstrated by

one-dimensional computation of the reflection coefficient at an
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air-lossy dielectric interface at a single frequency and over a
wide frequency bandwidth. The applicability of the SIBC to two-
dimensional scattering problems was demonstrated by scattering
width computation from an infinite square cylinder. For both the
one and two dimensional cases, the dispersive FDTD results were
shown to be in good agreement with exact results over the entire
bandwidth. Considerable computational savings were illustrated and

a recursive updating scheme was implemented which permits efficient

application of a dispersive surface impedance boundary condition to

practical scattering problems.

Future extensions of this surface impedance concept currently

under investigation are implementation in three dimensions,

inclusion of surface curvature, dispersive dielectric and magnetic

materials and thin material layers.
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Appendix

The purpose of this Appendix is to show how the discrete
convolution of the SIBC in (37) can be done recursively. The
convolution in (37) is

10 n-1

_[Hyn-m*l/Z(k+l/2)-Hyn_-'lZ(k+l/2)] aie %m

i =1 m=l

(42)

Consider n=2, and (42) becomes

10 ( HY 3/2 e"'(k+l/2) - Hy1/2(k+l/2))ai

i=1

(43) .

Now define

2 ( Hy112 ) ai(k+i/2) -- Hy3/2(k+I/2) - (k+I/2) aie'
(44) .

Next for n=3, (42) becomes

lO 2

_ (Hy7/2-m(k+i/2) - Hys/2-m(k+i/2))aie "'m
i =1 m=l

(45) .

Expanding (45) gives

I0

_(Hy5/2(k+I/2) - Hy3/2(k+i/2))aie a' +

i=I

(Hg3/2(k+i/2) - Hy1/2(k+i/2))ai e2='

(46) .

Substituting (44) into (46) we obtain

°[( ]01, oi, 2
HyS/2(k+II2) - Hy3/2(k+ll2))aie + e _i(k+ll2)

i--I

(47).

Equation (47) can be generalized for any time step n as

Hyn-I/2(k+i/2) - Hyn-3/2(k+I/2) aie + e _i (k+I/2)

i=I

(48).

with
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n

_i(k+i/2) HY n-I12(k+i/2) -HY n-312(k+i/2) )aie_'

ea'@ n-1(k+i/2)

+

(49)

and

i o (5o)_i(k+i/2) = _(k+i/2) = 0.0
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FIGURE TITLES

i • Problem geometry showing one-dimensional FDTD grid and planar

free space-conductor interface.

• FDTD dispersive SIBC discrete impulse response Z0(m ) versus m

and Prony approximation using i0 terms.

, Reflection coefficient magnitude versus frequency for normal

incidence plane wave calculated for a=2.0 S/m using FDTD

constant and dispersive SIBC and analytic solution•

• Reflection coefficient phase versus frequency for normal

incidence plane wave calculated for a=2.0 S/m using FDTD

constant and dispersive SIBC and analytic solution.

. Reflection coefficient magnitude versus frequency for normal

incidence plane wave calculated for a=20.0 S/m using FDTD

constant and dispersive SIBC and analytic solution.

• Reflection coefficient phase versus frequency for normal

incidence plane wave calculated for a=20.0 S/m using FDTD

constant and dispersive SIBC and analytic solution.

, Reflection coefficient magnitude versus frequency for normal

incidence plane wave calculated for u=2.0 S/m using FDTD

dispersive SIBC with original and larger cell size and

analytic solution•

• Reflection coefficient phase versus frequency for normal

incidence plane wave calculated for a=2.0 S/m using FDTD

dispersive SIBC with original and larger cell size and

analytic solution.

• Two dimensional geometry for scattering width computations

from an infinite square cylinder with a=20.0 S/m using normal

FDTD and FDTD dispersive SIBC.

i0. Scattering width magnitude versus frequency at scattering

angle _=0.0 degrees from an infinite square cylinder with

a=20.0 S/m using normal FDTD and FDTD dispersive SIBC.

ii. Scattering width magnitude versus frequency at scattering

angle _=30.0 degrees from an infinite square cylinder with

a=20.0 S/m using normal FDTD and FDTD dispersive SIBC.
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SUMMARY

Surface impedance boundary conditions are employed

to reduce the solution volume during the analysis of

scattering from lossy dielectric objects. In a finite

difference solution, they also can be utilized to avoid

using small cells, made necessary by shorter wavelengths

in conducting media, throughout the solution volume.

This paper presents a one dimensional implementation for

a surface impedance boundary condition for good

conductors in the Finite Difference Time Domain (FDTD)

technique.

In order to illustrate the FDTD surface impedance

boundary condition, we considered a planar air-lossy
dielectric interface as shown in Figure i. The incident

field has polarization TEz, and is propagating in the +z
direction. The one-dimensional FDTD grid is also shown

in Figure I. To begin our implementation for a FDTD

surface impedance boundary condition, we assume that the

lossy dielectric has permittivity _, permeability _, and

conductivity a; and that it is a good conductor. Thus,

these constitutive parameters are real and satisfy the

relation

a
=_1 (1)

where _ is the radian frequency. We also assume that

the radius of curvature is large compared to the maximum

wavelength in the material and that the thickness of the

material is large compared to the skin depth.



The first order (or Leontovich) impedance boundary
condition in the frequency domain is [i]

(2) .

where _,(_) is the surface impedance of the conductor.
A superscript "t" is used in equation (2) to indicate the
boundary condition is applied to the total field in free
space. The frequency domain surface impedance for good
conductors is

(3) .

Separating incident and scattered Ex terms in (2) yields

E_(o) = ne(o)H)(o) - m_(_) (4).

where the superscripts "s" and "i" are used to denote

scattered and incident field components respectively.

This equation is the required surface impedance boundary

condition for scattered field components. The

corresponding time domain expression involves a

convolution integral and is given as

El(t) = n's(t),H;(t) - (S)

where the '*' denotes convolution and the time domain

surface impedance impulse response is given by

_/e(t) :F-I{_/,(0_)):F-I{ _,(0J) ) (6) .

We have approximated this time domain impulse response by

a series of exponentials to obtain an efficient recursive

updating scheme requiring only four running sum variables

similar to [2]. Figures 2 and 3 show reflection

coefficient comparison versus frequency for

conductivities of I0.0 S/m and 50.0 S/m. The FDTD

reflection coefficients are compared against the standard

analytical solution. Note that the agreement is quite

good for the entire frequency band.

Overall, the surface impedance boundary condition

implementation works well in eliminating the conductor

volume from the solution space. This method has a

distinct advantage over other possible implementations

because the coefficients of the exponential approximation

of the impulse response are independent of the

conductivity of the scattering object and do not need to

be reevaluated for different conductivities. Extensions

of this surface impedance concept to two and three

dimensions are currently under investigation.
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Abstract

Radar Cross Section (RCS) calculations for flat, perfectly conducting plates are

readily available through the use of conventional frequency domain techniques such as
the Method of Moments (MOM). However, if the plate is covered with a dielectric material
that is relatively thick in comparison with the wavelength in the material, these frequency
domain techniques become increasingly difficult to apply. In this paper, we present the

application of the Finite Difference Time Domain (FDTD) technique to the problem of
electromagnetic scattering and RCS calculations from a thin, perfectly conducting plate
that is coated with a thick layer of Iossless dielectric material. Both time domain and RCS

calculations will be presented and discussed.

I. Introduction

The Finite Difference "l']me Domain (FDTD) technique has become increasingly

popular in recent years for modeling electromagnetic scattering problems. It is based
upon the time domain form of Maxwell's equations, in which temporal and spatial
derivatives are approximated by finite differences, and the electric and magnetic fields are
interleaved spatially and temporally. Transient scattering behavior is easily examined and

through the use of non-sinusoidal plane wave excitation, wideband frequency results can
be obtained. The technique was first proposed by Yee [1] in 1966 and is inherently
volumetric, which makes it ideal for modeling volumetric scatterers. Thin scatterers can

easily be accommodated, and recently the technique has been expanded to include
dispersive materials [2], plasmas [3], and chiral materials [4]. Through the use of a near
to far zone transformation [5], far zone scattered fields (and thus RCS data) are readily
available. This paper presents time domain scattering and RCS calculations over 0-3 GHz
for several incidence angles from a thin, perfectly conducting (PEC) plate that is coated

with a uniform Iossless dielectric layer.

II. Problem Description

The scattering problem was a 3,1.by 6_. (at 3 GHz) perfectly conducting plate that
was coated with a 5 cm thick Iossless dielectric layer with relative dielectric cons'_ant of

E r =4.0. Figure 1 shows the problem geometry with the dielectric layer on top of the plate.

The wavelength (at 3 GHz) inside the dielectric layer is _.0/_/-_ =5.0 cm, where k_ is the

free space wavelength at 3 GHz. Thus, the dielectric coating is relatively thick at 1;.. The
spatial increment (cell size) was chosen to be 1 cm, which provides a spatial resolution
of 5 cells/X inside the dielectric coating and 10 cells/_, o in free space.

The problem space size was chosen to be 61 by 121 by 49 cells in the x. y and
z directions respectively. The plate was centered within the problem space in the x and

y directions. The plate was positioned low in the problem space in the z directicn



to allow any specular reflections multipleencounters with the outer radiation boundary
condition (ORBC).

The plate was constructed with 30 by 60 by 5 cells in the x, y and z directions for
the dielectric coating, and with 30 by 60 by 0 cells for the PEC plate. The dielectric
coating was constructed first, and the PECplate was constructed on the bottom of the
dielectric layer to avoid any air gaps within the scatterer. A 15cell and 30 cell border on
each side of the scatterer in the x and y directions provided adequate margin for the near
to far zone transformation integration surface and for the ORBC.

A e-polarized, Gaussian pulse incident plane wave with a maximum amplitude of
1000 V/m and a total temporal width of 128 time steps was chosen. The time step was
0.0192 ns and the total number of time steps was 2048.

III. Computations and Discussion

Calculations were made at incidence angles e =0.0, e =60.0, e =85.0 and e =90.0
degrees for both an uncoated and coated plate. The incidence angle was taken from the
+z axis, the ¢ incidence angle was ¢ =0.0 degrees for all computations, and the far field
computations were for backscatter only. The e-polarized scattered and incident fields

were then transformed to the frequency domain via an FFT and RCS was determined.
Each computational problem required slightly more than one hour of CPU time on a Cray
Y-MP supercomputer.

Figure 2 shows the e-polarized time domain far zone scattered electric field for
incidence angle e =0.0 degrees. Note for the coated plate the early reflection from the
top edge of the dielectric layer. Also note the time domain response for the coated plate
is not markedly different from the uncoated plate except for some additional "ringing" due
to energy being confined within the dielectric coating. Figure 3 shows the RCS
computations versus frequency again for both the uncoated and coated plate, and the
RCS for both cases does not differ substantially.

Figure 4 shows the e-polarized time domain far zone scattered field for incidence
angle e = 60.0 degrees. Note the time responses differ more substantially for this case
as more energy is being confined within surface wave modes of the dielectric layer.

Figure 5 shows the corresponding RCS. Note the small peaks that have appeared in the
RCS for the coated plate. We postulate these peaks correspond to surface wave modes
that have been excited and radiate energy to the far field. As an approximation, we
computed cutoff frequencies for waveguide modes for an infinite, dielectric covered

ground plane according to Balanis [6]. These waveguide modes and corresponding
cutoff frequencies are tabulated in Table 1. Examining the RCS of the coated plate, it is
easily seen that a peak in the RCS is in close proximity to each cutoff frequent/from
Table 1. The peaks in the RCS are not located exactly at the cutoff frequencies of Table
1, probably due to the finite size of the plate.
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Mode Cutoff Frequency (GHz)

TMo 0.00000

TE1 0.86589

TM2 1.73718

TE3 2.59767

Table 1. Modes and cutoff frequencies for
an infiniteground plane covered with a

5 cm thick dielectric layer of Er=4.0.

Figure 6 shows the e-polarized time domain far zone scattered field for incidence
angle e =85.o degrees. Also shown in Figure 6 is the far zone scattered field for a 5 cm
thick 3X by 6_ dielectric layer. Sincethis incidence angle is near grazing, we expect to
see little scattered field for the uncoatedplate. Examining the time responses in Figure
6, the uncoated plate response is indeed quite small in comparison to the dominant
coated plate response. The dielectric layer response has the same general form as the
coated plate response but is smaller in magnitude. Figure 7 shows the corresponding
RCS. Note the large peaks and Iobingstructure for the coated plate and dielectric layer
RCS. These can be attributed to radiation from surface wave modes of the dielectric
cavity.

Figure 8 shows the e-polarized time domain far zone scattered field for incidence
anglee =90.0 degrees. The responsefor the zero-thickness uncoatedplate is zero,while
the coated plate time response does not differ substantially from that for inciden_ angle
e =85.0 degrees. Figure 9 shows the RCSfor the coated plate only, and it is also similar

to the coated plate RCS for incidence angle e =85.0 degrees.

IV. Conclusions

In this paper, the FDTD technique has been applied to model electromagnetic

scattering from a perfectly conducting plate coated with a uniform, Iossless Cletectric
layer. Time domain scattering results and frequency domain Radar Cross Section
computations were presented and discussed. Large peaks in the RCS were founc for the
coated plate at large incidence angles (near grazing) due to energy being radiat_ from
surface wave modes of the dielectric layer.
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The next slep would be to providea rigorous analytical treatment of the problem
of a dielectric layer on a finite sized plate (ground plane) and to derive the surface wave
structure of the layer and the far field scattering pattern. To the best of the authors'
knowledge, no such treatment has yet beenpresented. Resultsobtained from a rigorous
theoretical treatment would then be used for comparison with the FDTD scattering
computations and measured data.
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Abstract

Radar Cross Section (RCS) calculations for flat, perfectly conducting plates are
readily available through the use of conventional frequency domain techniques such as
the Method of Moments. However, if time domain scattering or wideband frequency
domain results are desired, then the Finite Difference Time Domain (FDTD) technique is
a suitable choice. In this paper, we present the application of the Finite Difference Time
Domain (FDTD) technique to the problem of electromagnetic scattering and RCS

calculations from a thin, perfectly conducting plate for a conical cut in the scattering angle
¢). RCS calculations versus angle _bwill be presented and discussed.

h Introduction

The Finite Difference Time Domain (FDTD) technique has become increasingly
popular in recent years for modeling electromagnetic scattering problems. It is based
upon the time domain form of Maxwelrs equations, in which temporal and spatial

derivatives are approximated by finite differences, and the electric and magnetic fields are
interleaved spatially and temporally. Transient scattering behavior is easily examined and
through the use of non-sinusoidal plane wave excitation, wideband frequency results can
be obtained. The technique was first proposed by Yee [1] in 1966 and is inherently
volumetric, which makes it ideal for modeling volumetric scatterers. Thin scatterers can
easily be accommodated, and recently the technique has been expanded to include
dispersive materials [2], plasmas [3], and chiral materials [4]. Through the use of a near

to far zone transformation [5], far zone scattered fields (and thus RCS data) are readily
available. This paper presents RCS calculations at several frequencies of a conical cut
in scattering angle (_ for a 3.5_. by 2;1.perfectly conducting plate. Results obtained with
FDTD computations are compared with results obtained with the ESP4 electromagnetic
code.

II. Problem Description

This particular scattering problem first came to the authors' attention when Dr. Woo
indicated he was obtaining significant discrepancies between measurements and
numerical analyses using several Method of Moments electromagnetic codes. He then
suggested that a scattering analysis by the Penn State FDTD code may provide some
insight as to where problems may exist.

The scattering problem was a 3.5_ by 2J. (at 3 GHz) perfectly conducting plate that
was oriented within the FDTD solution space as shown in Figure 1. The free space

wavelength (at 3 GHz) is _.o=10.0 cm. The spatial increment (cell size) was chosen to
be 1 cm, which provides a spatial resolution of 10 cells/_. 0 in free space.



3

The problem space size was chosen to be 66 by 41 by 49 cells in the x, y and z
directions respectively. The plate was centered within the problem space in the x and y
directions. The plate was positioned low in the problem space in the z direction to allow
any specular reflections multiple encounters with the outer radiation boundary condition
(ORBC).

The plate was constructed with 35 by 20 by 0 cells in the x, y and z directions for
the PEC plate. Thus the physical plate size was 35 cm by 20 cm. A 15 cell and 10 cell
border on each side of the scatterer in the x and y directions provided adequate margin
for the near to far zone transformation integration surface and for the ORBC.

A e-polarized, Gaussian pulse incident plane wave with a maximum amplitude of
1000 V/m and a total temporal width of 128 time steps was chosen. The time step was
0.0192 ns and the total number of time steps was 1024.

III. Computations and Discussion

At the recommendation of Dr. Woo, calculations were made for e =80.0 degrees;

and the angle e was varied from 0.0 to 10.0 degrees in steps of 0.5 degrees. The
incidence angles e and e were taken from the +z and +x axes respectively and the
incident field was e-polarized for all computations. The far field computations were for
backscatter only. For each incidence angle, the e-polarized (co-pol) and e-polarized
(cross-pol) scattered and incident fields were then transformed to the frequency domain
via an FFT and RCS was determined. From each RCS data file, the e-polarized and e-

polarized RCS at 3 GHz for each angle e were chosen and then entered into separate
data files of RCS versus angle e. Each incidence angle computation required 1.5 hours

on a 486/25 personal computer.

Figure 2 shows a sample time domain co-pol backscatter for e =80.0 degrees and
e = 5.0 degrees. Figure 3 shows a sample time domain cross-pol backscatter for e =80.0

degrees and e = 5.0 degrees.

Figure 4 shows the co-pol radar cross section versus scattering angle e. Note the

extreme disagreement between the FDTD result and the ESP4 result.

Figure 5 shows the cross-pol radar cross section versus scattering angle e. Note
the change in scale of the cross section and the relatively good agreement between the
FDTD result and the ESP4 result. Since the co-pol RCS results for FDTD and ESP4 were

very much different and the cross-poi RCS results were similar, this indicates a possible

problem with either the FDTD code or the ESP4 code.
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IV, Investigation

The original calculations for ESP4 were made at 3 GHz with a plate size of 35 cm
by 20 cm. These results were compared with FDTD RCS frequency domain data at 3
GHz. In order to gain some insight as to possible problems with the FDTD or ESP4
electromagnetic codes, three additional RCS computations were made with ESP4 at
frequencies of 2.25 GHz, 2.47 GHz and 2.70 GHz with e =80.0 degrees and a¢-polarized
incident field. These frequencies were chosen as approximate frequencies for two peaks

(2.25 and 2.70 GHz) and one null (2.47 GHz) in the co-pol frequency domain RCS from
Figure 6. The data points from the resulting FDTD RCS files were chosen for each
frequency and entered into a separate data file for comparison with ESP4 results.

Figure 6 shows the co-pol radar cross section versus frequency and incidence
angle (_. Figure 7 shows the cross-pol radar cross section versus frequency and
incidence angle ¢).

Figures 8 and 9 show the co-pol and cross-pol radar cross section versus

scattering angle (_ for both FDTD and ESP4 at 2.25 GHz. Note also the extreme
disagreement between the co-polarized RCS results and the good agreement between
the cross-polarized RCS results.

Figures 10 and 11 show the co-pol and cross-pol radar cross section versus
scattering angle (_ for both FDTD and ESP4 at 2.47 GHz. Again, note the disagreement
between the FDTD and ESP4 co-polarized RCS and the good agreement between the

cross-polarized RCS results.

Figures 12 and 13 show the co-pol and cross-pol radar cross section versus
scattering angle ¢_ for both FDTD and ESP4 at 2.7 GHz. Note the co-polarized RCS
results are in slightly better agreement and the cross-polarized results again are in good
agreement.

V. Conclusions

In this paper, the FDTD technique has been applied to model electromagnetic
scattering in a conical cut from a perfectly conducting plate. Radar Cross Section versus
scattering angle ¢_ was presented and discussed. The C-polarized FDTD and ESP4 RCS

results were very dissimilar, while the e-polarized RCS results were in good agreement.
Thus a problem may exist with one or both of the FDTD or ESP4 electromagnetic codes.
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Abstract

Thin sheets of resistive or dielectric material are commonly

encountered in radar cross section calculations. Analysis of

such sheets is simplified by using sheet impedances. In this

paper it is shown that sheet impedances can be modeled easily and

accurately using Finite Difference Time Domain (FDTD) methods.
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Introduction

In [I] a review of various approximate boundary conditions is

given, including several for thin sheets and layers. These are

applicable to sheets which are thin relative to the free space

wavelength, so that they can be approximated by an electric

current sheet. If the thin sheet is primarily conductive the

sheet impedance will be resistive, as is the case for resistance

cards. A thin lossless dielectric sheet will have a purely

reactive sheet impedance, while in general the sheet impedance

will be complex. These sheets are characterized by a

discontinuity in the tangential magnetic field on either side of

the sheet but no discontinuity in tangential electric field.

This continuity, or single valued behavior of the electric field,

allows the sheet current to be expressed in terms of an impedance

multiplying this electric field.

Approach

The sheet impedance can be defined in several ways.

convenient definition can be obtained by combining eqs.

(3.5) of [2]

A

(3.3) and

Ys = cT + j_e 0 (er-l) T (i)

with

z. = llY. (2)

where Ys is the sheet admittance, Z s the sheet impedance, o and _r

the conductivity and relative permittivity of the sheet material,

T the sheet thickness, and E0 the free space permittivity.

Let us now consider how to incorporate this approximation

into the FDTD method. The surface impedance approximation

2



requires the impedance sheet to be small compared with the free

space wavelength. In most FDTD calculations the FDTD cell size

(Yee [3] cells are used here) must be on the order of i/i0

wavelength or less for reasonably accurate results. Scattering

from an infinitesimally thin perfectly conducting plate was has

been calculated by approximating the plate as being one FDTD cell
thick with good results [4]. If it is assumed that the same

approach can be applied to infinitesimally thin impedance sheets,

then the plate thickness T in (i) merely becomes the thickness of

the FDTD cell, and the conductivity and/or relative permittivity

to be used in the FDTD calculations are merely adjusted in

accordance with (i) to give the desired sheet impedance. Note

that the FDTD cell dimension need not correspond to the thickness

of the actual physical plate. The FDTD cell thickness is used

only to determine the conductivity and relative permittivity of
the FDTD electric field location so that the desired sheet

impedance is approximated. Note also that, even if the

wavelength in the material forming the impedance sheet is much

smaller than a free space wavelength, the FDTD cell size need not

be correspondingly reduced.

Demonstration

The first demonstration will consist of calculating the far

zone backscatter from a 29 x 29 cm flat plate of sheet impedance

Zs = 500 _. The FDTD calculations will use cubical Yee cells

with i cm edges. Using T = 1 cm, the corresponding FDTD

conductivity is a = 0.2 S/m. The FDTD calculations shown in

Figures 1-8 are all made with the plate modeled by setting the

conductivity to 0.2 S/m for x and y polarized electric field

locations corresponding to single z dimension index over a range

of x and y dimension indices to model the plate. The FDTD

approach used and the transformation to the far zone is described

in [4]. The problem space size, orientation and position of the



plate, incident Gaussian pulse plane wave, and time step size are

also consistent with those in [4].

Figure 1 shows the far zone backscattered electric field for

a Gaussian pulsed plane wave normally incident on the plate. In

Figure 2 this result is Fourier transformed, converted to cross

section, and compared with results using the Method of Moments
[2]. The agreement is quite good, with the approximately 20 dB

reduction in radar cross section relative to a perfectly

conducting plate of the same size [4] consistently predicted by
both methods.

In Figures 3-8 the same plate geometry and composition is
considered but for non-normal incidence. The plate is

perpendicular to the z axis, with edges parallel to the x and y

axes, and the plane wave is incident from 8=45, _=30 degrees.

Figures 3-5 show the co-polarized backscatter far zone electric

field for _ and 8 polarizations and the cross-polarized

backscatter as well. In Figures 6-8 these time domain results
are Fourier transformed and converted to radar cross section for

comparison with Moment Method [2] results. Again the agreement

is quite good, except at the highest frequencies considered.

These results indicate that perhaps 12 cells/wavelength are
required for good accuracy for off-normal incidence. Comparing

the results in Figure 6 with those in Figure 5 of [4], it is

clear that changing from a perfectly to a finitely conducting

plate changes the scattering level and frequency behavior, and

that the FDTD and Moment Method results agree quite well on these

effects.

In Figure 9 both FDTD and Moment Method [4] results for

scattering by a plate with a complex sheet impedance are shown.

The sheet impedance is determined by applying eqs. (1,2) with

conductivity 0.25 S/m, relative permittivity 3.0, and thickness 1

cm., corresponding to the FDTD parameters used. Again the plane



wave is a Gaussian pulse incident from 8=45, _=30 degrees. The

FDTD results agree with the Moment Results for frequencies up to

about 12 cells/wavelength.

The final result is for a plate with edge treatment. For

this demonstration a 21 x 21 cm thin perfectly conducting plate

is given a 4 cm border of sheet impedance Zs = 500 n, resulting

in a square plate 29 x 29 cm. This edged plate is modeled in

FDTD by setting x and y polarized electric field locations for a

single z dimension index as being either perfect conductor for

the central portion of the plate or with a conductivity of 0.2

S/m for the edges. The ESP4 calculations were made with a

central perfectly conducting plate surrounded by 4 plates of

sheet impedance Zs = 500 n attached to the central plate using

overlap modes. The results are compared in Figure i0 with

excellent agreement between the two methods, both showing a

significant difference due to the edge treatment when compared

with the results of Figure 6.

Conclusions

The ability of the FDTD method to easily and accurately

model scattering by sheet impedances was demonstrated by

comparing FDTD results for scattering from flat plates modeled

using sheet impedances with Method of Moment results. The

approach described here is directly applicable to the Yee cell,

and demonstrated good accuracy for frequencies up to

approximately 12 cells per wavelength.
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. Cross-Polarized far zone electric field vs time scattered by
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degrees computed using FDTD.

• Co-Polarized radar cross section for a 29 x 29 cm flat plate
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with Moment Method [2] results•

. Co-Polarized radar cross section for a 29 x 29 cm flat plate

of sheet impedance 500 ohms, 8=45, _=30 degree incidence, 8-

polarized, obtained from FDTD results of Figure 4 compared

with Moment Method [2] results•

• Cross-Polarized radar cross section for a 29 x 29 cm flat

plate of sheet impedance 500 ohms, 8=45, _=30 degree

incidence, obtained from FDTD results of Figure 5 compared

with Moment Method [2] results.

• Co-Polarized radar cross section for a 29 x 29 cm flat plate

of sheet impedance corresponding to conductivity of 0.25,

relative permittivity of 3.0, and thickness 1 cm, for 8=45,

_=30 degree _-polarized incident plane wave calculated using

FDTD and compared with Method of Moments [2].

i0. Co-Polarized radar cross section for a 21 x 21 cm perfectly

conducting flat plate with a 4 cm 500 ohm edge treatment on

all sides (total plate size 29 x 29 cm) for 8=45, _=30

degree _-polarized incident plane wave calculated using FDTD

and compared with Method of Moments [2].
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Abstract

Determining transient electromagnetic fields in antennas with

nonlinear loads is a challenging problem. Typical methods used

involve calculating frequency domain parameters at a large number

of different frequencies, then applying Fourier transform methods

plus nonlinear equation solution techniques. If the antenna is

simple enough so that the open circuit time domain voltage can be
determined independently of the effects of the nonlinear load on

the antenna current (an infinitesimal dipole, for example), time

stepping methods can be applied in a straightforward way. In

this paper transient fields for antennas with more general

geometries are calculated directly using Finite Difference Time
Domain methods. In each FDTD cell which contains a nonlinear

load, a nonlinear equation is solved at each time step. As a

test case the transient current in a long dipole antenna with a

nonlinear load excited by a pulsed plane wave is computed using

this approach. The results agree well with both calculated and

measured results previously published. The approach given here

extends the applicability of the FDTD method to problems

involving scattering from targets including nonlinear loads and

materials, and to coupling between antennas containing nonlinear

loads. It may also be extended to propagation through nonlinear
materials.

1



INTRODUCTION

Calculating the transient electromagnetic fields in antennas

and scatterers containing nonlinear loads or material is a

difficult problem. The traditional approach has been to apply

frequency domain methods at a large number of harmonic

frequencies. Sarkar and Weiner [i] used this approach in

combination with a Volterra series analysis to determine

scattering from antennas with nonlinear loads. Liu and Tesche

[2,3] separated the problem into linear and nonlinear portions,

calculated wideband frequency domain characteristics for the

linear portion of the problem, transformed this to the time

domain, and then solved the nonlinear portion by time marching.

They achieved good agreement with measurements using this

approach, and their results presented in [3] will be used to

validate the results obtained in this paper. However, obtaining

the frequency domain results for a complicated antenna at the

large number of frequencies involved may be quite tedious and

involve significant computer resources. And this approach cannot

be extended to situations involving scattering from bulk regions

of nonlinear materials, or to propagation through nonlinear

materials as can the FDTD approach presented here.

For the simpler situation where the time domain open circuit

voltage on the antenna terminals can be determined independently

from the effects of the nonlinear load the frequency domain

portion of the approach of Liu and Tesche can be dispensed with,

and the open circuit voltage can be used as the input to a

nonlinear circuit model of the load, with the resulting problem

solved directly using time marching or other methods applied to

nonlinear circuits. This approach was used by Kanda [4], who

also gives an excellent review of previous work in this area.

Finally, Schuman [5] applied a time domain method of moments

approach to a thin straight wire. However, his method appears

difficult to apply to more general geometries.

In this paper the Finite Difference Time Domain (FDTD)

approach will be extended to include nonlinear lumped loads. The

2



reader is assumed to have some familiarity with this method. The

literature is extensive, with some representative papers included

in the following references [6-8]. The authors are using the

scattered field formulation of [8], but with linear time

differencing.

APPROACH

To illustrate the method, let us consider the specific

example of interest, taken from [3]. A wire dipole with half

length 0.6 meters and a diameter of 0.81 mm is loaded at its

midpoint, as shown in Figure i. The dipole is located parallel

to the z axis. The FDTD cell at the center of the wire is used to

model the lumped load. As described in [3], this load is two

diodes in series with a i00 ohm resistor (the actual measurements

were made using a single diode at the base of a monopole). The

total diode junction capacitance of 0.5 pF must also be included

in the model for accurate results at the frequencies contained in

the pulse.

In order to describe the approach used to model the diode

circuit in FDTD, let us first consider an approach to

approximating a linear lumped load consisting of a capacitor in

parallel with a resistor (conductance) in an FDTD cell. Starting

with

VXH=_- +aE

at

(i)

where H, E, 6 and a are the magnetic and electric fields, the

permittivity, and the conductivity, and following the Yee [6]

approach for discretizing space and time, with t=nAt, x=IAx,

y=JAy, z=KAz, eq. (i) becomes, for the z component of electric

field in a particular FDTD cell,



(V X H n÷112)z = c

n+1 n

E z -E z

At

n.1 (2)
+aE z

where _ and o pertain to the particular cell location of E z and

the superscripts denote the time reference of the particular

component. Usually in applying FDTD this equation is solved for

E_I in terms of the previous time values of E n and H _w, with the

curl H term computed using spatial finite differences. Instead,

consider the physical meanings of the terms. The curl H term

gives the total current density flowing in the cell surrounding

the electric field component. The next term involving E and the

time derivative of E is the displacement current density flowing

through the cell in the z direction. The aE _I term is the

conduction current density flowing through the cell in the z

direction. Using the cell dimensions ax, ay and _z, and assuming

fields are constant across the cell, we can rewrite the above

equation in terms of lumped elements, voltages, and currents as

AxAy(_7 x Hn+I/2)z : C Az

n+l n

E z -E z

6t

o÷' (3)
+GAZE z

where now the first term is the total current flowing through the

cell, C is the lumped "parallel plate" capacitance of the cell,

and G is the lumped conductance in parallel with the capacitance.

Note that one can identify &z E _I as the voltage across the cell.

Clearly a lumped capacitance C can be equivalent to setting an

appropriate value of the E of the cell based on the cell

dimensions, and similarly for a lumped resistance and the o of

the cell. Thus a lumped load that is a parallel combination of a

capacitor and a conductance (resistance) can be modeled simply by

setting the cell values of E and a appropriately. Equations (2)

and (3) are interchangeable in terms of solving for E_I.



However, one warning is that the cell permittivity cannot be

set too low. FDTD in the form presented in this paper cannot in

general model materials with an epsilon that is too small (much

less than free space) without becoming unstable. Such materials

can be modeled using FDTD modified for frequency dependent

materials [9], but with additional computational effort. If the

conductance G (conductivity a) is great enough so that the

displacement current term in eq. (2) (or (3)) can be neglected

then this term may be dropped. Indeed, if (2) or (3) is solved

for E_I and G (or equivalently o) is allowed to go to infinity,

the correct result of E_I=0 is obtained. However, making G (or

a) small enough so that the conduction current is smaller than

the displacement current through the cell filled with free space,

but nevertheless neglecting this displacement current term, will

result in instabilities. A physical argument for this is that

the capacitance of an FDTD cell cannot be made lower than the

capacitance of the cell filled with free space by adding lumped

elements in parallel with the cell capacitance.

Now let us proceed to extend this approach to the circuit of

interest, shown in Figure 2. In this figure the resistance R

models the input resistance of the oscilloscope used to measure

the current [3]. The capacitance C represents the capacitance of

the free space FDTD cell plus the junction capacitance of the

diode. The diode junction capacitance of the diode is not

actually in parallel with the resistor, but this approximation

simplifies the following derivation and does not appreciably

affect the results for the circuit element sizes under

consideration. Letting id represent the current through the

diode, which is also the total conduction current through the

cell, we can solve (3) for id obtaining

id = _xAy(VxH n÷I/2)z -
C_Z n+1 n

(E z -Ez) (4)
At
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Once i d is determined from (4), the diode voltage vd can be
obtained from the equation

2 vd + i d R = v¢ = _z E_÷I (5)

Since the diodes are in the circuit, i d must also satisfy the

nonlinear equations

id = 1.0xl0 _ vd, vd< 0 (6a)

is = 2.9xi0 -z [exp(15Vd) - i], Vd>0 (6b)

where (6) are the nonlinear diode equations given in [3]. Since

id as given in both eqs. (4) and (6a,b) must be equal, a Newton-

Raphson iteration method can be applied to solve for the E_I

value which produces required equality. This was the approach

taken in this paper. The convergence was very fast since an

initial guess for E _I of the previous value of E, En, provided

the Newton-Raphson iteration with a good starting value.

DEMONSTRATION

The dipole considered in [3] is excited by a pulsed plane

wave. As shown in [3], this plane wave has a peak electric field

strength of approximately 390 volts. For simplicity, this pulse

has been approximated for our calculations by a Gaussian pulse.

The FDTD excitation pulse used for the calculations in this paper

is shown in Figure 3. The actual pulse shown in [3] rings at a

low amplitude out to about 3 ns, but this was neglected in the

FDTD calculations.

In order to provide the necessary temporal resolution FDTD

cells were chosen as 0.006 m cubes, providing a time step of

11.55 ps. For the FDTD Gaussian pulse used in this demonstration

this allowed 64 time steps between the 1% of peak amplitude

values. The transient currents given in [3] have a duration of



approximately 14 ns. The corresponding FDTD calculation was 1300

time steps (allowing for the incident pulse to reach the dipole),

requiring 200 minutes on a 25 MHz 486 PC clone running Lahey
fortran.

To approximate the wire dipole 200 FDTD cells were used.

Since the wire diameter is smaller than the FDTD cell width,

subcell modeling was used to adjust for this [I0]. The FDTD

problem space was 39 x 39 x 240 cells, and was terminated in

second order Mur [ii] absorbing boundaries.

Three calculations of the current through the dipole load

were made and compared with results calculated by Liu and Tesche

[3]. For all FDTD results the total current flowing through the

FDTD cell, determined by evaluating the curl of H around the cell

containing the lumped load, is plotted. In the first calculation

only the i00 ohm resistor (in parallel with the free space
capacitance of the FDTD cell) was included, with the results

shown in Fig. 4. The agreement with the results of Liu is quite
reasonable.

Next the diodes were added in series with the I00 ohm

resistor, and the FDTD cell capacitance C, shown in Fig 2, was

set to 0.5 pF to model the combined diode junction capacitance.

FDTD results for the two cases considered in [3] were then

calculated. These are shown in Figs. 5 and 6, and differ only in

that the pulse initially forward biases the diode for the results

in Fig. 5, but reverse biases the diode in Fig. 6. Some points

taken from calculated results in [3] are included in Figs. 5 and

6 for comparison, but the interested reader on referring to [3]

directly will see that the agreement between the FDTD results and

both the calculated and measured results in [3] is excellent

considering the different assumptions and approximations made in

the analysis.

7



CONCLUSIONS

In this paper an approach to model nonlinear lumped elements

in the context of FDTD was presented. It was used to compute the

transient current in a diode loaded long dipole antenna, and

excellent agreement with previously published results was

obtained. This capability extends the applicability of the FDTD

method to a wide range of problems, including scattering from

nonlinear loaded antennas and harmonic product generation by

nonlinear elements. The method can be further extended to

considering regions of nonlinear material, since the (nonlinear)

material content of each FDTD cell can be specified

independently. Thus extensions to scattering from targets

containing nonlinear material, or to propagation through

nonlinear media should be straightforward. In combination with

FDTD methods for frequency dependent materials, it may also be

possible to extend the method to model electromagnetic

propagation through dispersive nonlinear materials, including

soliton propagation through such media•
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FIGURE TITLES

Fig 1. Pulsed plane wave incident on vertical wire dipole with
nonlinear load.

Fig 2. Approximate equivalent circuit of lumped nonlinear

load. Capacitance C includes both the FDTD cell

capacitance and the diode junction capacitances.

Resistance R simulates the input resistance of the

oscilloscope used to measure the current [3].

Fig. 3 Gaussian pulse used in the FDTD calculations to

simulate the pulse used by Liu et al in [3].

Fig. 4 Transient current flowing through i00 ohm load and

parallel FDTD cell capacitance at the terminals of the

wire dipole calculated using FDTD and compared with

calculated results of Liu et al [3].

Fig. 5 Total transient current flowing through equivalent

circuit of Fig. 2 located at the terminals of the wire

dipole calculated using FDTD and compared with

calculated results of Liu et al [3]. Diode is

initially forward conducting.

Fig. 6 Total transient current flowing through equivalent

circuit of Fig. 2 located at the terminals of the wire

dipole calculated using FDTD and compared with

calculated results of Liu et al [3]. Diode is

initially reverse conducting.
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Abstract

The Finite Difference Time Domain (FDTD) technique has been

applied to a wide variety of electromagnetic analysis problems,

including shielding and scattering. However, the method has not

been extensively applied to antennas. In this short paper

calculations of self and mutual admittances between wire antennas

are made using FDTD and compared with results obtained using the

Method of Moments. The agreement is quite good, indicating the

possibilities for FDTD application to antenna impedance and

coupling.

I Introduction

The Finite Difference Time Domain (FDTD) technique has had only

limited application to antennas. This is somewhat surprising,

since the geometrical and material generality of the method

suggests that it might have significant application to antenna

analysis, especially in situations where other structures,

especially electromagnetically penetrable ones, are nearby. This
is due to the relative ease with which the FDTD method

accommodates modeling of volumetric electromagnetic interactions

with materials as compared to the Method of Moments.

Earlier work [I] has shown that the FDTD method could compute the

self impedance of a wire antenna in three dimensions, however,

the approach used in [I], plane wave incidence, did not lend

itself to mutual coupling calculations. Accurate self-admittance

FDTD results for two-dimensional antenna geometries were

presented in [2]. In this paper we demonstrate both self and
mutual admittance FDTD calculations for three dimensional wire

antennas.



II Approach

The test problem geometry is shown in Figure i. Two wire dipoles

of length 57 and 43 cm are parallel and separated by 10.5 cm.

Both are center fed, and are symmetrically positioned. The goal

is to determine the self admittance of the driven dipole and the

mutual admittance between the two dipoles.

The FDTD computations were made using a three dimensional

computer code based on the Yee [3] cell, with second order Mur

[4] absorbing boundaries. The problem space was chosen as

61x51x80 cells, with the cell dimensions _x=_y=0.5 cm, _z=l.0 cm.

Making the two transverse dimensions smaller results in a greater

length to diameter ratio, so that a thin wire Moment Method code

may be used to provide comparison results over a wider band of

frequencies. Thinner wires may be modeled in FDTD using sub-cell

methods [5,6].

For the FDTD calculations the longer dipole is fed at the center

with a Gaussian pulse of i00 volts maximum amplitude that reached

its I/e amplitude in 16 time steps. The time steps were II.ii

picoseconds, the Courant stability limit for the cell size

chosen.

During the progress of the FDTD calculations the currents at the

center of each dipole were saved for each time step. They were

computed by evaluating the line integral of the magnetic field

around the dipoles at the center. Along with the applied

Gaussian voltage pulse the currents were Fourier transformed to

the frequency domain. Then, based on the admittance parameter

equations

II = Vl Y11 + V2 Y12

I2 = Vl Y21 + V2 Y22

and taking V I to be the driven dipole voltage and V 2 zero, we

easily obtain the self admittance of dipole I and the mutual

admittance (since Y12 = Y_I) between the dipoles by dividing the

appropriate complex Fourier transforms of Vl, II, and Iz.

The Moment Method results were obtained using the Electromagnetic

Surface Patch Version 4 [7] computer code. The wire radius for

the Moment Method calculations was taken as 0.281 cm, providing

the same cross section area as the 0.5 cm square FDTD cells.

While the FDTD calculations should be valid up to approximately 3

GHz based on having i0 FDTD cells per wavelength, the thin wire

approximation for the Moment Method code becomes questionable at

2



approximately 1 GHz and this was taken as the upper frequency
limit for comparison of results.

III Results

Figure 2 shows the Gaussian pulse voltage applied to the 1 cell

gap at the center of the longer, driven dipole. Figures 3 and 4

show the current flowing in the center cell of the driven and

passive dipole respectively. All are plotted on the same time

scale, corresponding to 8,192 time steps. This calculation

required approximately 7 hours on a 25 MHz 486-based personal

computer.

Figures 5-7 show the magnitude of the Fourier transforms of the

voltage and current results of Figures 2-4. The current results

indicate the complicated frequency domain behavior of the coupled

dipole system.

The self admittance was obtained by dividing the complex Fourier

transform of the driven dipole current by that of the Gaussian

voltage pulse at each frequency. The results are shown in

magnitude and phase in Figures 8 and 9 and compared with ESP4

Moment Method results. Considering the differences in how the

feed region is modeled (a 1 cm gap in the FDTD calculations vs an

infinitesimal gap in ESP4) the agreement is quite good.

The mutual admittance was obtained in a similar manner, dividing

the complex passive dipole current by that of the Gaussian pulse.

The results are shown in Figures 9 and I0. Again the agreement

is quite good considering the different approximations and

assumptions made in the FDTD approach relative to the ESP4

computer code.

IV Conclusions

The capability of the FDTD method to predict mutual coupling
between antennas was demonstrated. The test case was two

parallel wire dipoles of different lengths, with one driven by a

Gaussian pulse. The complex self and mutual admittance results

obtained using FDTD showed good agreement with results obtained

using the Method of Moments.
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